SciELO - Scientific Electronic Library Online

 
vol.12 número3Modulation Spaces with A loc∞ -WeightsStrichartz Estimates for the Schrödinger Equation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.12 no.3 Temuco  2010

http://dx.doi.org/10.4067/S0719-06462010000300013 

CUBO A Mathematical Journal Vol.12, N° 03, (203–212). October 2010

 

Analytic Continuation and Applications of Eigenvalues of Daubechies’ Localization Operator

 

KUNIO YOSHINO

Department of Natural Sciences, Faculty of Knowledge Engineering, Tokyo City University, Tokyo 158-8557, Japan email: yoshinok@tcu.ac.jp


ABSTRACT

In this paper we introduce generating functions of eigenvalues of Daubechies’ localization operator, study their analytic properties and give analytic continuation of these eigenvalues. Making use of generating functions, we establish a reconstruction formula of symbol functions of Daubechies’ localization operator with rotational invariant symbols.

Key words and phrases: Hermite functions, Daubechies (localization) operator, Borel transform, asymptotic expansion.


RESUMEN

Introducimos funciones generadas por los autovalores del operador de localización de Daubechies, estudiamos sus propiedades analíticas y damos continuación analítica de los autovalores. Haciendo uso de las funciones generadas, establecemos la fórmula de reconstrucción de funciones símbolo del operador de localización de Daubechies con símbolos rotacional invariante.

Math. Subj. Class.: 33, 44, 46F.


References

[1] ANDERSON, M., Topics in Complex Analysis, Springer-Verlag, New York, Berlin, Heidelberg, 1996.        [ Links ]

[2] ASHINO, R., BOGGIATTO, P. AND WONG, M.W., Advanced in Pseudo-Differential Operators, Birkhäuser-Verlag, Basel, Berlin, Boston, 2000.        [ Links ]

[3] BOAS, R.P., Entire Functions, Academic Press, New York, 1954.        [ Links ]

[4] DAUBECHIES, I., A time frequency localization operator; A geometric phase space approach, IEEE. Trans. Inform. Theory, vol.34, pp. 605–612, 1988.

[5] DAUBECHIES, I., Ten Lectures on Wavelets, Rutgers University and AT & T Bell Laboratories, 1992.        [ Links ]

[6] FOLLAND, G.B., Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989.        [ Links ]

[7] GRÖHENIG, K., Foundations of Time-Frequency Analysis, Birkhäuser-Verlag, Basel, Berlin, Boston, 2000.        [ Links ]

[8] MORIMOTO, M., An Introduction to Sato’s Hyperfunction, Translation of Math. Monograph, vol. 129, Amer. Math. Soc. Providence, Rhode Island, 1993.

[9] RUDIN, W., Real and Complex Analysis, McGraw-Hill Book Company, New York, 1987.        [ Links ]

[10] WONG, M.W.,Weyl Transforms, Springer-Verlag, New York, 1998.        [ Links ]

[11] WONG, M.W., Localization Operators on the Weyl-Heisenberg Group, Geometry, Analysis and Applications, Proceedings of the International Conference (editor:P.S.Pathak), pp. 303–314, 2001.

[12] WONG, M.W.,Wavelet Transforms and Localization Operator, Birkhäuser-Verlag, Basel, Berlin, Boston, 2002.        [ Links ]