SciELO - Scientific Electronic Library Online

 
vol.12 número3Generalized Spectrograms and t -Wigner TransformsAnalytic Continuation and Applications of Eigenvalues of Daubechies' Localization Operator índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.12 no.3 Temuco  2010

http://dx.doi.org/10.4067/S0719-06462010000300012 

CUBO A Mathematical Journal Vol.12, N°03, (187–202). October 2010

 

Modulation Spaces with A loc -Weights

 

YOSHIHIRO SAWANO

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan, email: yosihiro@math.kyoto-u.ac.jp


ABSTRACT

In this paper we describe the function space M s,wp,q with w ∈ A loc together with some related results of weighted modulation spaces.

Key words and phrases: Modulation spaces, Exponential weights.


RESUMEN

En este artículo describimos el espacio de la funciones M s,wp,q con w ∈ A loc junto con algunos resultados relacionados a espacios de modulación con peso.

Math. Subj. Class.: 41A17,42B35.


References

[1] BALAN, R., CASAZZA, P.G., HEIL, C. AND LANDAU, Z., Density, overcompleteness, and localization of frames, II. Gabor systems, J. Fourier Anal. Appl., 12 (3), 309–344, 2006.

[2] BÉNYI, A., GRÖCHENIG, K., OKOUDJOU, K.A. AND ROGERS, L.G., Unimodular Fourier multipliers for modulation spaces (English summary), J. Funct. Anal., 246, no. 2, 366– 384, 2007.

[3] BAOXIANG, W. AND CHUNYAN, H., Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations, 239(2007), no 1, 213–250.

[4] BAOXIANG, W., LIFENG, Z. AND BOLING, G., Isometric decomposition operators, function spaces Eλ p,q and applications to nonlinear evolution equations, J. Funct. Anal., 233(1), 1–39, 2006.

[5] FEICHTINGER, H., Modulation spaces on locally compact abelian groups, Technical report, University of Vienna.        [ Links ]

[6] FEICHTINGER, H., Atomic characterization of modulation spaces through Gabor-type representation, In Proc. Conf. Constructive Function Theory, Edmonton, July (1989), 113–126.

[7] FEICHTINGER, H., Gewichtsfunktionen auf lokalkompakten Gruppen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber, II, 188 (8-810), 451–471, 1979.

[8] FEICHTINGER, H. AND GRÖCHENIG, K., GABOR WAVELETS AND THE HEISENBERG GROUP: GABOR EXPANSIONS AND SHORT TIME FOURIER TRANSFORM FROM THE GROUP THEORETICAL POINT OF VIEW, In Charles K. Chui, editor, Wavelets :A tutorial in theory and applications, 359–398, Academic Press, Boston, MA, 1992.

[9] FEICHTINGER, H. AND GRÖCHENIG, K., Gabor frames and time-frequency analysis of distributions, J. Functional. Anal., 146(2) (1997), 464–495.

[10] GALPERIN, Y.V. AND SAMARAH, S., Time-frequency analysis on modulation spaces Mp,q m , 0 < p, q ≤∞, Appl. Comput. Harmon. Anal., 16 (2004), 1–18.

[11] GRÖCHENIG, K., Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, 2001.        [ Links ]

[12] GRÖCHENIG, K., Time-frequency analysis of Sjöstrands class, RevistaMat. Iberoam., 22 (2), 703–724, (2006), arXiv:math.FA/0409280v1.

[13] GRÖCHENIG, K., Weight functions in time-frequency analysis. (English summary) Pseudo-differential operators: partial differential equations and time-frequency analysis, Fields Inst. Commun., bf52, Amer. Math. Soc., Providence, RI, (2007), 343–366.

[14] GRÖCHENIG, K. AND HEIL, C., Modulation spaces and pseudo-differential operators, Integral Equations Operator Theory, 34, 439–457, 1999.

[15] GRÖCHENIG, K. AND RZESZOTNIK, Z., Almost diagonalization of pseudodifferential operators, Ann. Inst. Fourier, (2008), to appear        [ Links ]

[16] HASUMI, M., Note on the n-dimension Tempered Ultradistributions, Tohoku Math. J., 13, 94–104, 1961.

[17] IZUKI, M. AND SAWANO, Y., Greedy bases in weighted modulation spaces, to appear in J. Nonlinear Analysis Series A: Theory, Methods and Applications.        [ Links ]

[18] KOBAYASHI, M., Modulation spaces Mp,q for 0 < p, q ≤∞, J. Function Spaces Appl, 4(3) (2006), 329–341.

[19] KOBAYASHI, M. AND SAWANO, Y., Molecular decomposition of the modulation spaces Mp,q and its application to the pseudo-differential operators, to appear in Osaka Mathematical Journal.        [ Links ]

[20] SAWANO, Y., Atomic decomposition for the modulation space Msp,qq with 0 < p, q ≤∞, s∈ R , Proceedings of A. Razmadze Mathematical Institute, 145, 63–68, 2007.

[21] SAWANO, Y., Weighted modulation space Msp,q (w) with w ∈ A locp , J. Math. Anal. Appl, 345, 615–627, 2008.

[22] SJÖSTRAND, J., An algebra of pseudodifferential operators, Math. Res. Lett., 1, no.2, 185–192, 1994.

[23] SJÖSTRAND, J., Wiener type algebras of pseudodifferential operators, In Séminaire sur les équations aux dérivées partielles, 1994–1995, pages Exp. No. IV, 21. École Polytech., Palaiseau, 1995.

[24] SJÖSTRAND, J., Pseudodifferential operators and weighted normed symbol spaces, Preprint, 2007. arXiv:0704.1230v1.        [ Links ]

[25] TACHIZAWA, K., The boundedness of pseudodifferential operators on modulation spaces, Math. Nachr., 168, 263–277, 1994.

Creative Commons License