SciELO - Scientific Electronic Library Online

 
vol.12 número3Calculations in New Sequence Spaces and Application to Statistical ConvergenceExistence of Periodic Solutions for a Class of Second-Order Neutral Differential Equations with Multiple Deviating Arguments índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.12 no.3 Temuco  2010

http://dx.doi.org/10.4067/S0719-06462010000300009 

CUBO A Mathematical Journal Vol.12, N°03, (139–151). October 2010

 

Some Generalizations of Mulit-Valued Version of Schauder’s Fixed Point Theorem with Applications

 

BAPURAO C. DHAGE

Kasubai, Gurukul Colony, Ahmedpur – 413515, Distr. Latur, Maharashtra, India email: bcdhage@yahoo.co.in


ABSTRACT

In this article, a generalization of a Kakutani-Fan fixed point theorem for multi-valued mappings in Banach spaces is proved under weaker upper semi-continuity condition and it is further applied to derive a generalized version of Krasnoselskii’s fixed point theorem and some nonlinear alternatives of Leray-Schauder type for multi-valued closed mappings in Banach spaces.

Key words and phrases: Multi-valued mappings, fixed point theorem, nonlinear alternative.


RESUMEN

En este artículo probamos una generalización para el teorema del punto fijo de Kakutani- Fan para aplicaciones multi-valuadas en espacios de Banach, bajo condición de semi-continuidad superior debil. Este resultado es aplicado para obtener una versión generalizada del teorema del punto fijo Krasnoselskii y algunas alternativas de tipo Leray-Schauder para aplicaciones multi-valuadas cerradas en espacios de Banach.

Math. Subj. Class.: 47H10.


References

[1] AGARWAL, R.P., MEEHAN, M. AND O’REGAN, D., Fixed Point Theory and Applications, Cambridge Univ. Press, 2001.

[2] AKHMEROV, R.R., KAMENSKII, M.I., POTAPOV, A.S., RODHINA, A.E. AND SADOVSKII, B.N., Measures of Noncompactness and Condensing Operators, Birkhauser Verlag, 1992.        [ Links ]

[3] BANAS, J. AND GOEBEL, K., Measures of Noncompactness in Banach Spaces, LNPAM Vol. 60, Marcel Dekker, New York, 1980.        [ Links ]

[4] BROWDER, F.E, The fixed point theory for multi-valued mappings in topological spaces, Math. Ann., 177 (1968), 283–301.

[5] DEIMLING, K., Nonlinear Functional Analysis, Springer-Verlag, 1985.        [ Links ]

[6] DHAGE, B.C., Multi-valued mappings and fixed points I, Nonlinear Functional Anal., & Appl. 10 (2005), 359–378.

[7] DHAGE, B.C., Multi-valued mappings and fixed points II, Tamkang J. Math., 37 (2006), 27–46.

[8] DHAGE, B.C., Asymptotic stability of nonlinear functional integral equations via measures of noncompactness, Comm. Appl. Nonlinear Anal., 15 (2) (2008), 89–101.

[9] HIMMELBERG, C.J., Fixed point for compact multifunctions, J. Math. Anal. Appl., 38 (1972), 205–207.

[10] HU, S. AND PAPAGEORGIOU, N.S., Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Dordrechet / Boston / London, 1997.        [ Links ]

[11] KAKUTANI, S., A generalization of Brower’s fixed point theorem, DukeMath. J., 8 (1941), 457–459.

[12] PETRUSEL, A., Operatorial Inclusions, House of the Book of Science, Cluj Napoka, 2002        [ Links ]

[13] O’REGAN, D., Fixed point theory for closed multifunctions, Arch. Math. (Brno), 34 (1998), 191–197.

[14] SADOVSKII, B.N., Limit-compact and condensing operators, Russian Math. Survey, 27 (1972), 85–155.

Creative Commons License