versión On-line ISSN 0719-0646

Cubo vol.12 no.3 Temuco  2010

http://dx.doi.org/10.4067/S0719-06462010000300005

CUBO A Mathematical Journal Vol.12, N°03, (71–81). October 2010

L -Random and Fuzzy Normed Spaces and Classical Theory

Department of Mathematics, National University of Ireland, Galway, Ireland email: donal.oregan@nuigalway.ie

Department of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran email: rsaadati@eml.cc

ABSTRACT

In this paper we study L-random and L-fuzzy normed spaces and prove open mapping and closed graph theorems for these spaces.

Key words and phrases: L-random normed space, L-fuzzy normed space, completeness, quotient space, open mapping and closed graph.

RESUMEN

En este artículo estudiamos espacios normados L-random and L-fuzzy. Probamos el teorema de la aplicación abierta y el teorema del gráfico cerrado.

References

[1] DESCHRIJVER, G, O’REGAN, D., SAADATI, R. AND VAEZPOUR, S.M., L-fuzzy Euclidean normed spaces and compactness, Chaos, Solitons and Fractals, 42 (2009), no. 1, 40–45, MR2543015.

[2] DESCHRIJVER, G. AND KERRE, E.E., On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227–235.

[3] GOGUEN, J., L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–74.

[4] HADŽIC, O. AND PAP, E., Fixed Point Theory in PM-Spaces, Kluwer Academic, 2001.        [ Links ]

[5] HADŽIC, O., PAP, E. AND BUDINCEVIC, M., Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetica, 38 (3) (2002), 363–381.

[6] PARK, J.H., Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039–1046.

[7] RODRÍGUEZ-LÓPEZ, J. AND RAMAGUERA, S., The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2004), 273–283.

[8] SAADATI, R.,On the L-fuzzy topological spaces, Chaos, Solitons and Fractals, 37 (2008), 1419–1426.

[9] SCHWEIZER, B. AND SKLAR, A., Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983.        [ Links ]

[10] SHERSTNEV, A.N., On the notion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963), 280–283, (in Russian).

[11] WILHELM, M., Relations among some closed graph and open mapping theorems, Colloq. Math., 42 (1979), 387–94

Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons