SciELO - Scientific Electronic Library Online

 
vol.12 número2The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert kernelGeneralized quadrangles and subconstituent algebra ¹ índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.12 no.2 Temuco  2010

http://dx.doi.org/10.4067/S0719-06462010000200004 

CUBO A Mathematical Journal Vol.12, N°02, (43–52). June 2010

 

On subsets of ideal topological spaces

 

V. Renukadevi

Department of Mathematics, ANJA College, Sivakasi-626 124, Tamil Nadu, India. email: renu_siva2003@yahoo.com


ABSTRACT

We define some new collection of sets in ideal topological spaces and characterize them in terms of sets already defined. Also, we give a decomposition theorem for α - I-open sets and open sets. At the end, we discuss the property of some collection of subsets in *-extremally disconnected spaces.

Key words and phrases: *-extremally disconnected spaces, t-I-set, α-I-open set, pre-I-open set, semi-I-open set, semi* - I-open, semipre* - I-open, CI-set, BI-set, B1I-set, B2I-set, B3I-set, δ-I-open, RI-open, I-locally closed set, weakly I-locally closed set, AIR-set, DI-set.


RESUMEN

Definimos una nueva colección de conjuntos en espacios topológicos ideales y caracterizamos estos en términos de conjuntos ya definidos. También damos un teorema de descomposición para α-I- abiertos y conjuntos abiertos. Finalmente discutimos la probabilidad de algunas colecciones de subconjuntos en espacios disconexos *- extremos.

2000 AMS subject Classification: Primary: 54 A 05, 54 A 10


References

[1] A. Açikgöz and S .Yüksel, Some new sets and Decompositions of AI-R-continuity, α - I-continuity, Continuity via Idealization, Acta Math. Hungar., 114(1 - 2)(2007), 79 - 89.        [ Links ]

[2] A. Açikgöz, T. Noiri and S .Yüksel, On δ-I-open sets and Decomposition of α-continuity, Acta Math. Hungar., 102(2004), 349 - 357.        [ Links ]

[3] A. Açikgöz, S.Yüksel and Noiri, α - I-Preirresolute Functions and θ - I-Preirresolute Functions, Bull. Malays. Math. Sci. Soc., (2)28(1)(2005), 1 - 8.        [ Links ]

[4] G. Aslim, A. Caksu Guler and T. Noiri, On decompositions of continuity and some weaker forms of continuity via idealization, Acta Math. Hungar., 109(3)(2005), 183 - 190.        [ Links ]

[5] Á. Császár, On the Υ-&interior and Υ-closure of a set, Acta Math. Hungar., 80(1998), 89 - 93.        [ Links ]

[6] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math.J., 2(1996).        [ Links ]

[7] E. Ekici and T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., to appear.        [ Links ]

[8] E. Hatir and T. Noiri, On decomposition of Continuity via Idealization, Acta Math. Hungar., 96(4)(2002), 341 - 349.        [ Links ]

[9] E. Hatir, A. Keskin and T. Noiri, On a new decomposition of continuity via idealization, JP Jour. Geometry and Topology, 3(2003), 53 - 64.        [ Links ]

[10] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205 - 215.        [ Links ]

[11] D. Jankovic and T.R. Hamlett, New Topologies from old via Ideals, Amer. Math. Monthly, 97 No.4 (1990), 295 - 310.        [ Links ]

[12] V. Jeyanthi and D. Sivaraj, A note on δ - I-sets, Acta Math. Hungar., 114(1 - 2)(2007), 165 - 169.        [ Links ]

[13] A. Keskin, S. Yüksel and T. Noiri, Decompositions of I-continuity and Continuity, Commun. Fac. Sci. Univ. Ank. Serials A1, 53(2004), 67 - 75.        [ Links ]

[14] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.        [ Links ]

[15] V. Renukadevi, Note on IR-closed and AIR-sets, Acta Math. Hungar., To appear.        [ Links ]

[16] R. Vaidyanathaswamy, The Localization Theory in Set Topology, Proc. Indian Acad. Sci. Math. Sci., 20 (1945), 51 - 61.        [ Links ]

[17] S. Yüksel, A. Açikgöz and T. Noiri, On δ - I-continuous functions, Turk. J. Math., 29(2005), 39 - 51.        [ Links ]

Received: November 2008.

Revised: February 2009.