SciELO - Scientific Electronic Library Online

 
vol.67 número2Relación entre la invasión de Acacia dealbata Link (Fabaceae: Mimosoideae) y la riqueza de especies vegetales en el centro-sur de ChileEstudio preliminar de la flora liquénica de Isla Mocha, sur de Chile índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Gayana. Botánica

versión On-line ISSN 0717-6643

Gayana Bot. v.67 n.2 Concepción  2010

http://dx.doi.org/10.4067/S0717-66432010000200005 

Gayana Bot. 67(2): 198-205, 2010 ISSN 0016-5301

 

ARTÍCULOS REGULARES

 

Karyotypic studies in the Chilean genus Placea (Amaryllidaceae)

 

Estudios cariotípicos en el género chileno Placea (Amaryllidaceae)

 

Mauricio A. Cisternas1, Loreto Araneda1,2, Nicolás García3,4 & Carlos M. Baeza5

1 Facultad de Agronomía, Pontificia Universidad Católica de Valparaíso, casilla 4-D, Quillota, Chile. mcisternasb@yahoo.com

2 Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003, USA.

3 Department of Biology, University of Florida, Gainesville, FL 32611, USA

4 Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Chile, Casilla 9206, Santiago, Chile.

5 Departamento de Botánica, Facultad de Ciencias Naturales y Oceanógraficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.


ABSTRACT

Chromosome numbers and karyotypes of seven specific taxa of the Chilean endemic genus Placea were determined. Chromosome numbers of P. lutea, P. ornata, P grandiflora, P germainii andP. aff davidii are described for the first time. All taxa are diploid with 2«=2x=16 and karyotypes are composed of four metacentric (4 m), ten submetacentric (10 sm), and two subtelocentric (2 st) chromosomes. The most symmetrical karyotype was observed in P. lutea (AI: 6.84) while the most asymmetrical karyotype was shown by P. arzae (AI: 9.72). The constancy in karyotype formulae and high similarity in asymmetry indexes suggest that some orthoselection mechanism might be involved in Placea's chromosomal evolution. In spite that no significant karyotypic differences were observed, the species may be differentiated by their chromosomal sizes. Moreover, the tribal position of Placea and its likely relationships with other hippeastroid genera are discussed.

Keywords: Chile, endemic flora, Hippeastreae, karyology.


RESUMEN

Se determinaron números cromosómicos y cariotipos de siete especies del género endémico chileno Placea. Los números cromosómicos para P. lutea, P. ornata, P. grandiflora, P. germainii y P. aff. davidii son descritos por primera vez. Todas las taxa son diploides con 2«=2x=16 y los cariotipos están compuestos por cuatro cromosomas metacéntricos (4 m), diez submetacéntricos (10 sm) y dos subtelocéntricos (2 st). El cariotipo más simétrico fue observado enP. lutea (AI: 6,84), mientras que el cariotipo más asimétrico fue encontrado enP. arzae (AI: 9,72). La constancia en las fórmulas cariotípicas y la alta similaridad en los índices de asimetría sugieren que algún mecanismo de ortoselección podría estar involucrado en la evolución cromosómica del género Placea. A pesar que no se observaron diferencias cariotípicas significativas, las especies pueden ser diferenciadas por los tamaños cromosómicos. Además, se discuten la posición tribal de Placea y su relación probable con otros géneros Hippeastroides.

Palabras clave: Chile, flora endémica, Hippeastreae, cario logia.


 

INTRODUCTION

Placea Miers ex Lindl. (Hippeastreae, Amaryllidaceae) is an endemic genus from Central Chile (Traub & Moldenke 1949). It is of considerable interest due to its narrow geographical distributionbetween Illapel, región Coquimbo (ca. 31°S) and Rancagua región (ca. 34°S) covering coastal and Andean mountains, besides hilly áreas of the Central valley (Muñoz 2000, Ravenna2003). Placeaos inflorescence consists of (1) 3-8 (12) flowers, with mainly whitish (more rarely red-purple, yellow or carmine-pink) tepals with red or purple longitudinal stripes and they are characterized by a conspicuous paraperigone or corona (Traub & Moldenke 1949, Traub 1963, Ravenna 2003). Due to their beautiful showy flowers, these plants have been suggested to have a high floricultural potential (Amagada & Zóllner 1996, Bridgen et al. 2001, Baeza & Schrader 2004).

Chromosome studies have been carried out in almost every genera of Amaryllidaceae tribe Hippeastreae, to which Placea belongs (Meerow & Snijman 1998, Meerow et al. 1999, Meerow et al. 2000). Chromosome numbers have been determined for several South American species of Hippeastrum Herb. (e.g. Naranjo & Andrada 1975), Habranthus Herb. (e.g. Naranjo 1974), Rhodophiala C. Presl (Grau & Bayer 1991, Naranjo & Poggio 2000, Baeza et al. 2006, also treated as Myostemma Salisb.), Phycella Lindl. (Palma-Rojas 2000, Grau & Bayer 1991, Baeza et al. 2007a, 2007b), Rhodolirium Phil. (Palma-Rojas 2000, Naranjo & Poggio 2000, Baeza et al. 2009), Zephyranthes Herb. (e.g. Naranjo 1974) andthe monotypic genus Traubia Mold. (Grau & Bayer 1991). However, chromosome studies in Placea have been addressed only intwo species: P. arzae Phil. (Naranjo 1985)anáP. amoenaPhil. (Baeza& Schrader 2004, Baeza et al. 2007b), both species being diploids (2« = 2x= 16). The chromosome number and karyotype of the remaining Placea species is unknown.

The aim of this work is to determine the chromosome number and the karyotype of the genus Placea, and their relationships with other Hippeastroid genera in order to increase the knowledge about the karyological diversity of this endemic genus.

MATERIALS AND METHODS

The study was conducted during March to September 2008. In order to disclose the karyotype of each Placea species germplasm from seeds and bulbs was obtained from different localities in Chile (Table I, Fig. 1). Seeds were sowed in Petri dishes with water-moistened filter paper and placed at 4°C until roots reached one-centimeter of length. Bulbs were placed in glass containers with water-moistened absorbent paper at room temperarme until roots sprouted. Root tips were pre-treated in colchicine (0.05%) for 18 h at room temperature, then fixed in a freshly prepared mixture of absolute ethanol-glacial acid acetic (3:1) for 24 h and stored in 70% ethanol. Treated root tips were hydrolyzed in HC1 IN for 10 minutes at 60°C, macerated, stained with lacto-propionic orcein and squashed on a slide (Araneda et al. 2004). Slides were made permanent using liquid nitrogen and mounted in a glycerin drop. Plates were observed using a light microscope with incorporated digital camera. Images were analyzed with Micro Measure 3.3 (Reeves 2001). The length and shape of chromosomes were determined to construct the karyotypes by using Adobe Photoshop 7.0 (Seven metaphase plates from three to ten plants per species were selected). Chromosomes were classified according to Levan et al. (1964), the abbreviations being m, sm, and st which correspond to metacentric, submetacentric, and subtelocentric chromosomes, respectively.

The following parameters were calculated in each metaphase plate for the numerical characterization of the karyotypes: mean haploid chromosome length (CL), and total complement length (TCL). These parameters were compared by one-way ANOVA and Tukey's test was carried out to test differences between each pair of means. Statistical evaluation was carried out using SPSS 14.0.

Karyotype asymmetry was estimated using intrachromosomal asymmetry index (A1); interchromosomal asymmetry index (A2); coefficient of variation of chromosome length (CVcl); coefficient variation of centromeric index (CVci) and a new asymmetry index (AI) proposedby Paszko (2006). All the species were identified using the key provided by Traub & Moldenke (1949) and later contributions by Ravenna (1981) and Muñoz (2000). The reference materials are deposited in the herbarium of the Universidad de Concepción (CONC), Instituto Nacional de Investigaciones Agropecuarias (INIA), Jardín Botánico Nacional (JBN) and Museo Nacional de Historia Natural (SGO).

Table I. Taxa and localities of Placea used in this chromosomal study.

Tabla I. Taxa y localidades de Placea usadas en este estudio cromosómico.

Figure 1. Somatic chromosomes of Placea. a)P. grandiflora, h)P. aff. davidii, c)P arzae, d)P lutea, e)P. amoena, í)P germaiini, g)P ornata. Scale bar =10 ¡im. All figures to same scale.

Figura 1. Cromosomas somáticos de Placea. a)P. grandiflora, h)P. aff. davidii, c)P arzae, d)P lutea, e)P amoena, í)P germaiini, g)P ornata. Escala =10 ¡im. Todas las figuras están en la misma escala.

RESULTS

The analyzed parameters are summarized in Table II. Mitotic metaphases and diploid karyotypes of the species are shown in Figures 1 and 2, respectively.

All seven accessions analyzed showed a common karyotype constitutedby eight chromosome pairs of different sizes and the common karyotype formula was 4m + 10sm + 2st. In most of the taxa, the longest pair corresponded to the first metacentric pair and the shortest pair was the sixth pair (submetacentric) (Table II). The shortest chromosomes were observed in P. aff. davidii and P. lutea, while the longest chromosomes were found in P. amoena. Chromosomes of P. amoena were 30% longer than chromosomes of P. aff. davidii.

For TCL, ANOVA discriminated among taxa (F= 18.22 5, P < 0.001). Considering the CL of each chromosomal pair, all the chromosomal pairs were different among taxa (Table II). In all the assessments, with exception of the seventh and eighth chromosome pairs, P. amoena was different from each other species. In general, the examined karyotypes were asymmetrical with respect to chromosome length and heterogeneous regarding chromosome uniformity. Chromosomes with low length variability were found in P. ornata, P. aff. davidii and P. lutea (A2=0.27 to 0.28). All analyzed taxa showed high degrees of karyotype asymmetry indicatedby theirhigh A1 valúes (0.92 to 0.93). However, according to the asymmetry index (AI), the most symmetrical karyotype was observed in P. lutea (AI=6.84), while the most asymmetrical karyotype was exhibited by P. arzae (AI=9.72). The scatter diagram of CVci and CVcl (Fig. 3) showed two groups of species: one composed by the most asymmetrical karyotypes (AI=8.72-9.72) and the other with the most symmetrical karyotypes (AI=6.84-7.42). Placea amoena fell apart, with the lowest relative variation in centromere position, although still variable in chromosome length.

DISCUSSION

The chromosome number and karyotype structure, but not the total chromosome length, were the same for every Placea species. Chromosome numbers in P. aff. davidii, P. ornata, P. grandiflora and P. germainii are reported for the first time, establishing a diploid number (2«=2x=16) for the genus

Placea. Chromosome numbers of the remaining taxa (P arzae and P. amoena) agree with previous reports (Naranjo 1985, Baeza & Schrader 2004). The basic chromosome number x = 8, probably was derived by a reduction process from x = 11 (Naranjo & Poggio 2000). The basic number x = 8 has been reported in related hippeastroid genera from South America, such as Phycelia, Rhodophiala, Rhodolirium and Traubia (Grau & Bayer 1991, Naranjo & Poggio 2000, Palma-Rojas 2000, Baeza et al. 2007a, 2007b, 2009).

The sof chromosome number in genus Placea suggests that neither polyploidy nor aneuploidy nor dysploidy have played a significant role in its diversification. This fact strongly contrast with studies that have stressed how chromosomal numeric alteration processes have played an important role in the evolution of other hippeastroid genera, such as Hippeastrum, Rhodophiala, Habranthus and Zephyranthes (Naranjo 1969, Naranjo 1974, Naranjo & Andrada 1975, Flory 1977, Naranjo & Poggio 2000).

As far as karyotypes are concerned, our results agree with previous reports for Placea amoena (4m + lOsm + 2st) (Baeza & Schrader 2004, Baeza et al. 2007b). However, the karyotype of P arzae observed in this study disagrees with the 4m + 6sm + 6st with a satellite on the short arm of chromosome 6 (st) reported by Naranjo (1985). His observations were made in specimens obtained in Cautín, Villarrica (Chile, ca. 39° S), where Placea does not occur in nature. It seems likely that the material used by Naranjo (1985) was misidentified and might correspond to a species of the related genus Rhodolirium that occurs naturally in this área. Placea and Rhodolirium share the diploid number 2«=16. However, the presence of a satellite on the short arm of the st chromosome pair has been reported in two species of the latter genus (i.e. Rhodolirium montanum Phil., cited as Phycella sp. in Palma-Rojas 2000 and cited as Rhodophiala rhodolirion (Baker) Traub in Naranjo & Poggio 2000, and Rhodolirium andícola (Poepp.) Ravenna, cited as Rhodophiala andícola (Poepp.) Traub in Naranjo & Poggio 2000). However, it would be necessary to check the herbarium voucher used by Naranjo (1985) in order to corrobórate this hypothesis.

Karyotypes of all taxa are quite similar, being mostly comprised by submetacentric chromosomes. These results suggest the existence of interspecific stability in the karyotypes of Placea. The karyotypes were considered bimodal because of the presence of two outstanding groups of different mean sizes. The total complement is occupied by two large chromosome pairs and six medium-sized pairs. This process can be explained by karyotype orthoselection, where structural chromosome mutation occurs in a certain way, or by karyotype conservation, where the lack of structural mutations preserves the chromosome morphology. In our case, the constancy of the karyotype formula and similarity in asymmetry index (AI, A1 and A2), suggest that some orthoselection mechanism might be involved (White 1973, Sanso 2002). Similar results have been found in other South American monocots, such as Rhodophiala (Naranjo & Poggio 2000), Hippeastrum (Naranjo 1969, Naranjo & Andrada 1975) and Alstroemeria (Sanso 2002).

Table II. Average length of total complement (TCL), chromosome length (CL), asymmetry índex (AI), intrachromosomal and Interchromosomal asymmetry indexes (A and A respectively) of the place's species studied.

Tabla II. Longitudes promedio del complemento cromosómico, longitudes de cromosomas e índices de asimetría (AI, Aí y A2) de las especies de Placea estudiadas.

Figure 2. Diploid karyotypes. a)P. grandiflora, b)P aff davidii, c)P arzae, d)P. lutea, e)P amoena, f)P germaiini, g)P ornata. Scale bar =10 |xm. All figures to same scale.

Figura 2. Cariotipos diploides. a)P. grandiflora, h)P. aff. davidii, c)P arzae, d)P lutea, e)P amoena, f)P germaiini, g)P ornata. Escala de la barra =10 ¡im. Todas las figuras están en la misma escala.

Figure 3. Scatter diagram for species of Placea. CVci versus CVd.
Figura 3. Diagrama de flujo de las especies de Placea, considerando CVci versus CVd.

The chromosome size is also subject to evolutionary change. Frequently, the total mass of chromosomes in a nucleus has been found to be closely related to its DNA content. Thus, a factor responsible of the range of vanation of chromosome size among species of the same genus may be polyploidy, repeatedDNAcontent, orincrease inthebasic number(Sharma & Sen 2002, Schubert 2007). The vanation of chromosome size found in this study ranges between 14.95-6.85 |am in P. amoena to 8.33-4.03 |am vcvP. aff. davidii. However, neither polyploidy nor an increase in the basic number were recorded in Placea. Therefore, differences in DNA content would be the most plausible explanation for chromosome size vanation in this genus. However, this suggestion must be confirmed with DNA content measurements (e.g. flow cytometry). In spite of the similarity inthe coefficients of vanation assessed in all the species, the scatter diagram of CVci and CVcl showed two groups of species and Placea amoena as an isolated species. This singular position of Placea amoena is correlated with both karyotype difference and its cunent taxonomic segregation. This result supports subgenus Geissea (Traub & Moldenke 1949), defined to distinguish the systematic placement of P amoena from the rest of the genus, although the present phenetic analysis has no implications on whether it conesponds to a distinct evolutionary lineage within Placea.

The systematic and phylogenetic relationships of Placea within the tribe Hippeastreae is unknown, because previous phylogenetic studies in Amaryllidaceae have included only few samples of Chilean genera and none of Placea (Meerow etal. 1999, 2000). However, Placea, Phycella, Rhodolirium and Traubia share the same basic chromosome number x=8 (Naranjo 1985, Palma-Rojas 2000, Grau & Bayer 1991, Naranjo & Poggio 2000, Baeza et al. 2009) and the presence of a capitate stigma (Ravenna 2003). These shared traits suggest that these genera might be closely related within tribe Hippeastreae.

Finally, these results should be considered as a first insight into the karyotypic evolution of Placea, however, several other aspects must be considered and explored in order to achieve a better understanding of this phenomenon. It would be very useful to carry out an extensive survey across the geographical distribution range of Placea to assess intra-and interspecific variability, and perform a phylogenetic analysis to obtain a framework of its evolutionary history.

REFERENCES

Araneda, L., L. Mansur & R Salas. 2004. Chromosome numbers in the Chilean endemic genus Leucocoryne (Huilli). Journal of the American Society of Horticultural Science 129: 77-80.        [ Links ]

Arriagada, L. & O. Zollner. 1996. The genus Placea Miers ex Lindley (Amaryllidaceae) in Chile. Herbertia 51: 133-135.         [ Links ]

Baeza, M. & O. Schrader. 2004. Karyotype analysis of Placea amoena Phil. (Amaryllidaceae) by double fluorescence in situ hybridization. Caryologia 57: 200-2005.         [ Links ]

Baeza, M., O. Schrader & I. Escobar. 2006. Estudio del cariotipo en Rhodophiala aff. advena (Ker-Gawl.) Traub de la VIII Región de Chile. Kurtziana 32: 45-51.         [ Links ]

Baeza, M., E. Ruiz & M. Negritto. 2007a. Elnúmero cromosómico de Phycella australis Ravenna (Amaryllidaceae). Gayana Botánica 64: 117-120.         [ Links ]

Baeza, M., O. Schrader, A. Terrab, T. Stuessy, M. Rosas, E. Ruiz, M. Negritto & E. Urtubey. 2007b. Recuentos cromosómicos en plantas que crecen en Chile. III. Gayana Botánica. 64: 175-183.         [ Links ]

Baeza, C.M., C. Mariangel, E. Ruiz & M. Negritto. 2009. El cariotipo fundamental en Rhodolirium speciosum (Herb.) Ravenna y R. andícola (Poepp.) Ravenna (Amaryllidaceae). Gayana Botánica 66(1): 99-102.         [ Links ]

Bridgen, M., E. Olate & F. Schiappacasse. 2001. Flowering geophytes of Chile. Acta Horticulturae 570:75-80.         [ Links ]

Flory, W.S. 1977. Overview of chromosomal evolution in the Amaryllidaceae. Nucleus 20: 70-88.         [ Links ]

Grau, J. & E. Bayer. 1991. Zur sy stematischen Stellung der Gattung Traubia Moldenke (Amaryllidaceae). Mitteilungen der Botanischen Staatssammlung München 30: 479-484.         [ Links ]

Levan, A., K. Fredga & A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.         [ Links ]

Levin, D. A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York, 240 pp.         [ Links ]

Meerow, A.W. & D.A. Snijman. 1998. Amaryllidaceae. In: K. Kubitzki (ed.), Families and genera of vascular plants, volume 3, pp. 83-110. Springer-Verlag, Berlin.         [ Links ]

Meerow, A.W., M.F. Fay, C.L. Guy, Q.B. Li, F.Q. Zaman & M.W. Chase. 1999. Systematics of Amaryllidaceae based on cladistic analysis of plastid rbcL and trnL-F sequence data. American Journal of Botany 86: 1325-1345.         [ Links ]

Meerow, A.W., C.L. Guy, Q.B. Li & S.L. Yang. 2000. Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences. Systematic Botany 25: 708-726.         [ Links ]

Muñoz, M. 2000. Consideraciones sobre los géneros endémicos de monocotiledóneas de Chile. Noticiero Mensual del Museo Natural de Historia Natural. 343: 16-27.         [ Links ]

Naranjo, C.A. 1969. Cariotipos de nueve especies argentinas de Rhodophiala, Hippeastrum, Zephyranthes y Habranthus (Amaryllidaceae). Kurtziana 5: 67:87. Naranjo, C.A. 1974. Karyotypes of tour Argentine species of Habranthus and Zephyranthes (Amaryllidaceae). Phyton 32:61-71.         [ Links ]         [ Links ]

Naranjo, C .A. 1985. El cariotipo de Placea arzae (Amaryllidaceae). Boletín de la Sociedad Argentina de Botánica 24: 197- 199.         [ Links ]

Naranjo, C.A. & A.B. Andrada. 1975. El cario tipo fundamental del género Hippeastrum Herb. (Amaryllidaceae). Darwiniana 19: 556-582.         [ Links ]

Naranjo, C.A & L. Poggio. 2000. Karyotypes of five Rhodophiala species (Amaryllidaceae). Boletín de la Sociedad. Argentina de Botánica 35: 335-343.         [ Links ]

Palma-Rojas, C. 2000. Caracterización citogenética de los géneros Rhodophiala Presl. y Phycella Lindl. (Amaryllidaceae). En: R Peñailillo, F Schiappacasse (eds.), Los geófitos nativos y su importancia en la floricultura: Fundación para la Innovación Agraria (FIA) y Dirección de Investigación, Universidad de Talca (DIUT), Santiago, Chile, pp. 73-79.         [ Links ]

Paszko, B. 2006. A critical review and a newproposal of karyotype asymmetry Índices. Plant Systematic and Evolution 258: 39-48.         [ Links ]

Ravenna, P.F. 1981. Contributions to South American Amaryllidaceae VII (VIII). Plant Life 37: 57-83.         [ Links ]

Ravenna, P 2003. Elucidation and systematics of the Chilean genera of Amaryllidaceae. Botánica Australis 2: 1-32.         [ Links ]

Reeves, A. 2001. MicroMeasure: A new computer program for the collection and analysis for the cytogenetic data. Genome 44: 239-443.        [ Links ]

Sanso, M. 2002. Chromosome studies in Andean taxa of Alstroemeria (Alstroemeriaceae). Botanical Journal of the Linnean Society 138: 451-459.         [ Links ]

Schubert, I. 2007. Chromosome evolution. Current Opinión in Plant Biology 10:109-115 pp.         [ Links ]

Sharma, A. & S. Sen. 2002. Chromosome botany. Enfield & Plymouth, Science Publishers, USA. 155 pp.         [ Links ]

Traub, H.P 1963. Genera of the Amaryllidaceae. The American Plant Life Society, La Jolla, California. 85 pp.         [ Links ]

Traub, H.P. & H.N. Moldenke. 1949. Amaryllidaceae: tribe Amarylleae. The American Plant Life Society, Stanford, California, 194 pp.         [ Links ]

White, M.J.D. 1973. Animal cytology and evolution. Cambridge University press, Cambridge, 468 pp.        [ Links ]

Recibido: 27.10.09

Aceptado: 24.03.10