SciELO - Scientific Electronic Library Online

 
vol.31 número2Some separation axioms in L-topological spacesHochschild-Serre Statement for the total cohomology índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

Compartilhar


Proyecciones (Antofagasta)

versão impressa ISSN 0716-0917

Proyecciones (Antofagasta) vol.31 no.2 Antofagasta jun. 2012

http://dx.doi.org/10.4067/S0716-09172012000200004 

Proyecciones Journal of Mathematics Vol. 31, No 2, pp. 149-164, June 2012. Universidad Católica del Norte Antofagasta - Chile

 

Uniform Convergence and the Hahn-Schur Theorem

 

Charles Swartz

New Mexico State University, U.S.A.


ABSTRACT

Let E be a vector space, F aset, G be a locally convex space, b : E X F — G a map such that ò(-,y): E — G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E — G are continuous for all y G F .A series Xj in X is ë multiplier convergent with respect to w(E, F) if for each t = {tj} G ë ,the series Xj=! tj Xj is w(E,F) convergent in E. For multiplier spaces ë satisfying certain gliding hump properties we establish the following uniform convergence result: Suppose j XX ij is ë multiplier convergent with respect to w(E, F) for each i G N and for each t G ë the set {Xj=! tj Xj : i} is uniformly bounded on any subset B C F such that {x · y : y G B} is bounded for x G E.Then for each t G ë the series ^jjLi tj xj · y converge uniformly for y G B,i G N. This result is used to prove a Hahn-Schur Theorem for series such that lim¿ Xj=! tj xj · y exists for t G ë,y G F. Applications of these abstract results are given to spaces of linear operators, vector spaces in duality, spaces of continuous functions and spaces with Schauder bases.

Key Words : Multiplier convergent series, uniform convergence, Hahn-Schur Theorem.


REFERENCES

[BCS] O. Blasco, J. M. Calabuig, T. Signes, A bilinear version of Orlicz-Pettis theorem, J. Math. Anal. Appl., 348, pp. 150-164, (2008).

[CL] A. Chen, R. Li, A version of Orlicz-Pettis Theorem for quasi-homogeneous operator space, J. Math. Anal. Appl., 373, pp. 127-133,(2011).

[Ga] D. J. H. Garling, The ⠗ and ã—duality of sequence spaces, Proc.Camb. Phil. Soc., 63, pp. 963-981, (1967).

[Ha] H. Hahn, Uber Folgen linearen Operationen, Monatsch. fur Math. und Phys., 32, pp. 1-88, (1922).

[K1] G. Kothe, Topological Vector Spaces I, Springer, Berlin, (1983). [K2] G. Kothe, Topological Vector Spaces II, Springer, Berlin, (1979). [LW] R. Li, J. Wang, Invariants in Abstract Mapping Pairs, J. Aust. Math.Soc., 76, pp. 369-381, (2004).

[Sc] J. Schur, Uber lineare Transformation in der Theorie die unendlichen Reihen, J. Reine Agnew. Math., 151, pp. 79-111, (1920).

[St] W. J. Stiles, On Subseries Convergence in F-spaces, Israel J. Math., 8, pp. 53-56, (1970).

[Sw1] C. Swartz, An Introduction to Functional Analysis, Marcel Dekker, N. Y., (1992).

[Sw2] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publ., Singapore, (1996).

[Sw3] C. Swartz, Multiplier Convergent Series, World Sci. Publ., Singapore, (2009).

[Sw4] C. Swartz, A Bilinear Orlicz-Pettis Theorem, J. Math. Anal. Appl., 365, pp. 332-337, (2010).

[Th] G. E. F. Thomas, L'integration par rapport a une mesure de Radon vectorielle, Ann. Inst. Fourier, 20(, pp. 55-191, (1970).

[Wi] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).


Received : January 2012. Accepted : February 2012

Charles Swartz

Department of Mathematical Sciences

New Mexico State University

Las Cruces, NM 88003, U. S. A.

e-mail : cswartz@nmsu.edu

Creative Commons License