SciELO - Scientific Electronic Library Online

 
vol.31 número1The signature in actions of semisimple Lie groups on pseudo-Riemannian manifoldsOn an algorithm for finding derivations of Lie algebras índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Proyecciones (Antofagasta)

versão impressa ISSN 0716-0917

Proyecciones (Antofagasta) vol.31 no.1 Antofagasta mar. 2012

http://dx.doi.org/10.4067/S0716-09172012000100007 

Proyecciones Journal of Mathematics Vol. 31, No 1, pp. 65-79, March 2012. Universidad Católica del Norte Antofagasta - Chile

 

Half-Sweep Geometric Mean Iterative Method for the Repeated Simpson Solution of Second Kind Linear Fredholm Integral Equations

 

Mohana Sundaram Muthuvalu

University Malaysia Sabah, Malaysia

Jumat Sulaiman

University Malaysia Sabah, Malaysia


ABSTRACT

In previous studies, the effectiveness of the Half-Sweep Geometric Mean (HSGM) iterative method has been shown in solving first and second kind linear Fredholm integral equations using repeated trapezoidal (RT) discretization scheme. In this work, we investigate the efficiency of the HSGM method to solve dense linear system generated from the discretization of the second kind linear Fredholm integral equations by using repeated Simpson's ^ (RS1) scheme. The formulation and implementation ofthe proposed method are also presented. In addition, several numerical simulations and computational complexity analysis were also included to verify the efficiency of the proposed method.

Keywords: Linear Fredholm equations, half-sweep iteration, repeated Simpson, Geometric Mean

Mathematics Subject Classification: 41A55, 45A05, 45B05, 65F10, 65Y20


REFERENCES

[1] Abdullah, A. R. The four point Explicit Decoupled Group (EDG) method: A fast Poisson solver. International Journal of Computer Mathematics 38: pp. 61-70, (1991).

[2] Abdullah, M. H., J. Sulaiman, A. Saudi, M. K. Hasan, and M. Oth-man. A numerical simulation on water quality model using Half-Sweep Geometric Mean method. Proceedings of the Second Southeast Asian Natural Resources and Environment Management Conference: pp. 2529, (2006).

[3] Allahviranloo,T., E. Ahmady,N.Ahmady, and K. S. Alketaby.Block Jacobi two-stage method with Gauss-Sidel inner iterations for fuzzy system of linear equations. Applied Mathematics and Computation 175: pp. 1217-1228, (2006).         [ Links ]

[4] Atkinson, K. E. The Numerical Solution of Integral Equations ofthe Second Kind. Cambridge: Cambridge University Press. (1997).         [ Links ]

[5] Cattani, C., and A. Kudreyko. Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Applied Mathematics and Computation 215: pp. 4164-4171, (2010).         [ Links ]

[6] Chen, Z., B. Wu, and Y. Xu. Fast numerical collocation solutions of integral equations. Communications on Pure and Applied Analysis 6:pp. 643-666, (2007).

[7] Evans, D. J. The Alternating Group Explicit (AGE) matrix iterative method. Applied Mathematical Modelling 11: pp. 256-263, (1987).         [ Links ]

[8] Kang, S. -Y., I. Koltracht, and G. Rawitscher. Nystrom-Clenshaw-Curtis Quadrature for Integral Equations with Discontinuous Kernels. Mathematics ofComputation 72: pp. 729-756, (2003).         [ Links ]

[9] Liu, Y. Application of the Chebyshev polynomial in solving Fredholm integral equations. shape Mathematical and Computer Modelling 50: pp. 465-469, (2009).

[10] Long, G., M. M. Sahani, and G. Nelakanti. Polynomially based multi-projection methods for Fredholm integral equations of the second kind. Applied Mathematics and Computation 215: pp. 147-155, (2009).         [ Links ]

[11] Mastroianni, G., and G. Monegato. Truncated quadrature rules over and Nystrom-type methods. SIAM Journal on Numerical Analysis 41:pp. 1870-1892, (2004).

[12] Mirzaee, F., and S. Piroozfar. (2010). Numerical solution of linear Fredholm integral equations via modified Simpson's quadrature rule. Journal ofKing Saud University - Science 23: (2011).         [ Links ]

[13] Muthuvalu, M. S., and J. Sulaiman. Half-Sweep Geometric Mean method for solution of linear Fredholm equations. Matematika 24: pp.75-84, (2008).         [ Links ]

[14] Muthuvalu, M. S., and J. Sulaiman. Numerical solutions of second kind Fredholm integral equations using Half-Sweep Geometric Mean method. Proceedings of the IEEE International Symposium on Information Technology: pp. 1927-1934, (2008).

[15] Muthuvalu, M. S., and J. Sulaiman. Half-Sweep Arithmetic Mean method with high-order Newton-Cotes quadrature schemes to solve linear second kind Fredholm equations. Journal of Fundamental Sciences 5: pp. 7-16, (2009).         [ Links ]

[16] Muthuvalu, M. S., and J. Sulaiman. Numerical solution of second kind linear Fredholm integral equations using QSGS iterative method with high-order Newton-Cotes quadrature schemes. Malaysian Journal of Mathematical Sciences 5: pp. 85-100, (2011).         [ Links ]

[17] Nichols, N. K. On the convergence of two-stage iterative process for solving linear equations. SIAM Journal on Numerical Analysis 10: pp.460-469, (1973).         [ Links ]

[18] Polyanin, A. D., and A. V. Manzhirov. Handbook ofIntegral Equations. CRC Press LCC, (1998).         [ Links ]

[19] Ruggiero, V., and E. Galligani. An iterative method for large sparse systems on a vector computer. Computers & Mathematics with Applications 20: pp. 25-28, (1990).         [ Links ]

[20] Saberi-Nadjafi, J., and M. Heidari. Solving integral equations of the second kind with repeated modified trapezoid quadrature method. Applied Mathematics and Computation 189: pp. 980-985, (2007).         [ Links ]

[21] Sahimi, M. S., A. Ahmad, and A. A. Bakar. The Iterative Alternating Decomposition Explicit (IADE) method to solve the heat conduction equation. International Journal ofComputer Mathematics 47: pp. 219229, (1993).         [ Links ]

[22] Sahimi, M. S., and M. Khatim. The Reduced Iterative Alternating Decomposition Explicit (RIADE) method for diffusion equation. Per-tanika Journal ofScience & Technology 9: pp. 13-20, (2001).         [ Links ]

[23] Sulaiman, J., M. Othman, and M. K. Hasan. A new Half-Sweep Arithmetic Mean (HSAM) algorithm for two-point boundary value problems. Proceedings of the International Conference on Statistics and Mathematics and Its Application in the Development of Science and Technology: pp. 169-173, (2004).         [ Links ]

[24] Sulaiman, J., M. Othman, N. Yaacob, and M. K. Hasan. Half-Sweep Geometric Mean (HSGM) method using fourth-order finite difference scheme for two-point boundary problems. Proceedings of the First International Conference on Mathematics and Statistics: pp. 25-33, (2006).

[25] Wang, W. A new mechanical algorithm for solving the second kind of Fredholm integral equation. Applied Mathematics and Computation 172: pp. 946-962, (2006).

Mohana Sundaram Muthuvalu

School of Science and Technology, Universiti Malaysia Sabah

Jalan UMS, 88400 Kota Kinabalu,

Sabah, Malaysia

e-mail : sundaram_at2@yahoo.com

and

Half-Sweep Geometric Mean Iterative Methodfor the ... 79

Jumat Sulaiman

School of Science and Technology,

Universiti Malaysia Sabah

Jalan UMS, 88400 Kota Kinabalu,

Sabah,

Malaysia

e-mail : jumat@ums.edu.my

Received : August 2010. Accepted : September 2011