SciELO - Scientific Electronic Library Online

 
vol.31 número1Improving some sequences convergent to Euler-Mascheroni constantThe signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.31 no.1 Antofagasta mar. 2012

http://dx.doi.org/10.4067/S0716-09172012000100005 

Proyecciones Journal of Mathematics Vol. 31, No 1, pp. 39-49, March 2012. Universidad Católica del Norte Antofagasta - Chile

An upper bound on the largest signless Laplacian of an odd unicyclic graph

Macarena Collao

Universidad Católica del Norte, Chile

Pamela Pizarro

Universidad Católica del Norte, Chile

OSCAR ROJO

Universidad Católica del Norte, Chile

 


ABSTRACT

We derive an upper bound on the largest signless Laplacian eigenvalue of an odd unicyclic graph. The bound is given in terms of the largest vertex degree and the largest height of the trees obtained removing the edges of the unique cycle in the graph.

AMS classification : 05C50, 15A48.

Keywords : Laplacian matrix; signless Laplacian matrix; adjacency matrix; spectral radius; generalized Bethe tree.

 


REFERENCES

[1] D. Cvetkovic, P. Rowlinson, S. K. Simic, Signless Laplacian of finite graphs, Linear Algebra Appl. 423, pp. 155-171, (2007).         [ Links ]

[2] D. Cvetkovic, P. Rowlinson, S. K Simic, Eigenvalue bounds for the signless Laplacian, Publications de L'institute Mathematique, Nou-velle serie tome 81(95), pp. 11-27, (2007).         [ Links ]

[3] R. Diestel, Graph Theory, Electronic Editions 2005, Springer-Verlag Hiedlberg, New York.         [ Links ]

[4] G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed. ,John Hopkins University Press, (1989).         [ Links ]

[5] C. S. Oliveira, L. S. de Lima, N. M. M. de Abreu, P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Applied Mathematics 158, pp. 355-360, (2010).         [ Links ]

[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, (1991).

[7] S. Hu, The largest eigenvalue of unicyclic graphs, Discrete Math. 307, pp. 280-284, (2007).         [ Links ]

[8] Y. Ikebe, T. Inagaki, S. Miyamoto, The Monotonicity Theorem, Cauchy's Interlace Theorem and Courant-Fisher Theorem, American Mathematical Monthly Vol. 94, No. 4, April, pp. 352-354, (1987).         [ Links ]

[9] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matrices, Electronic Journal of Linear Algebra 15, pp. 115-133, (2006).         [ Links ]

[10] O. Rojo, New upper bounds on the spectral radius of unicyclic graphs, Linear Algebra Appl. 428, pp. 754-764, (2008).         [ Links ]

[11] O. Rojo, Spectra of copies of a generalized Bethe tree atached to any graph, Linear Algebra Appl. 431, pp. 863-882, (2009).         [ Links ]

[12] L. N. Trefethen and D. Bau, III Numerical Linear Algebra, Society for Industrial and Applied Mathematics, (1997).         [ Links ]

[13] R. Varga, Matrix Iterative Analysis, Theory, Prentice-Hall, Inc.,(1965).         [ Links ]

Macarena Collao

Departamento de Matemáticas Universidad Católica del Norte

Casilla 1280

Antofagasta

Chile

e-mail : maca_collaom@hotmail.com

Pamela Pizarro

Departamento de Matemáticas Universidad Católica del Norte

Casilla 1280

Antofagasta

Chile

e-mail : parkinzon_triste@hotmail.com

and

Oscar Rojo

Departamento de Matemáticas Universidad Católica del Norte

Casilla 1280

Antofagasta

Chile

e-mail : orojo@ucn.cl

Received : November 2011. Accepted : January 2012

*Work supported by Project Fondecyt 1100072, Chile.