SciELO - Scientific Electronic Library Online

 
vol.30 número1The reconstruction of a periodic structure from its dynamical behaviourA note on the jordan decomposition índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.30 no.1 Antofagasta  2011

http://dx.doi.org/10.4067/S0716-09172011000100010 

Proyecciones Journal of Mathematics
Vol. 30, N° 1, pp. 111-122, May 2011.
Universidad Católica del Norte
Antofagasta - Chile


Some mathieu-type series for the I-function occuring in the fokker-planck equation


Tibor K. Pogány1
Ram K. Saxena2

1University of Rijeka, Croatia
2Jain Narain Vyas University, Jodhpur, India



Correspondencia a:


Abstract

Closed form expressions are obtained for a family of convergent Mathieu type a-series and its alternating variants, whose terms contain an I-function which is a generalization of the Fox's H-function. The results derived are of general character and provide an elegant generalization for the closed form expressions of these series associated with the H-function by Pogány [9], for Fox-Wright functions by Pogány and Srivastava [10] and for pFq and Meijer's G-function by Pogány and Tomovski [13], and others.

2000 Mathematics Subject Classification : Primary 33C20, 33C60; Secondary 40G99, 44A20.



Texto completo sólo en formato PDF

 

References

[1] P. Cerone, C. T. Lenard, On integral forms of generalized Mathieu series, JIPAM J. Inequal. Pure Appl. Math. 4(5) Art. 100, pp. 1-11, (2003).         [ Links ]

[2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York, (1955).         [ Links ]

[3] A. A. Kilbas, M. Saigo, H-Transforms: Theory and Application, Chapman & Hall/CRC Press, Boca Raton, London, New York, (2004).         [ Links ]

[4] A. M. Mathai, H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, (2008).         [ Links ]

[5] A. M. Mathai, R. K. Saxena, The H{function with Applications in Statistics and Other Disciplines, Wiley Eastern, New Delhi & Wiley Halsted, New York, (1978).         [ Links ]

[6] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-function: Theory and Applications, Springer, New York, (2009).         [ Links ]

[7] T. K. Pogány, Integral representation of a series which includes the Mathieu a{series, J. Math. Anal. Appl. 296, pp. 309-313, (2004).         [ Links ]

[8] T. K. Pogány, Integral representation of Mathieu (a;λ) - series, Integral Transforms Spec. Functions 16(8), pp. 685-689, (2005).         [ Links ]

[9] T. K. Pogány, Integral expressions of Mathieu-type series whose terms contain Fox's H-function, Appl. Math. Letters 20, pp. 764-769, (2007).         [ Links ]

[10] T. K. Pogány, H. M. Srivastava, Some Mathieu-type series asociated with the Fox-Wright function, Comput. Math. Appl. 57(1), pp. 127-140, (2009).         [ Links ]

[11] T. K. Pogány, H. M. Srivastava, and Z. Tomovski, Some families of Mathieu a-series and alternating Mathieu a-series, Appl. Math. Comput. 173(1), pp. 69-108, (2006).         [ Links ]

[12] T. K. Pogány, Z. Tomovski, On multiple generalized Mathieu series, Integral Tranforms Spec. Funct. 17(4), pp. 285-293, (2006).         [ Links ]

[13] T. K. Pogány, Z. Tomovski, On Mathieu-type series which terms contain generalized hypergeometric function pFq and Meijer's G-function, Math. Comput. Modelling 47(9-10), pp. 952-969, (2008).         [ Links ]

[14] T. K. Pogány, Z. Tomovski, Bounds improvement of alternating Mathieu type series, J. Math. Inequal. 4(3), pp. 23-34 ,(2010).         [ Links ]

[15] R. K. Saxena, R. Kumar, A basic analogue of generalized H-function, Mathematiche (Catania) 50, pp. 263-271, (1995).         [ Links ]

[16] R. K. Saxena, J. Ram and A. R. Chauhan, Fractional integration of the product of the I-function and Appell function F3, Vijnana Parishad Anusandhan Patrika 45(4), pp. 345-371. (2002). (in Hindi)        [ Links ]

[17] R. K. Saxena, Y. Singh, Integral operators involving generalized H-function, Indian J. Math. 35, pp. 177-188, (1993).         [ Links ]

[18] V. P. Saxena, The I-function, Anamaya Publications, New Delhi, (2008).         [ Links ]

[19] V. P. Saxena, Formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India Sect. A 52, pp. 366-375, (1982).         [ Links ]

[20] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi, (1982).         [ Links ]

[21] H. M. Srivastava, Z. Tomovski, Some problems and solutions involving Mathieu's series and its generalizations, JIPAM J. Inequal. Pure Appl. Math. 5(2), Art. 45, pp. 1-13, (2004).         [ Links ]

[22] N. Sudland, B. Baumann and T. F. Nonnenmacher, Fractional driftless Fokker-Planck equation with power law diffusion coeffcients, In: V. G. Gangha, E. W. Mayr and V. G. Vorozhtsov (Eds.) Computer Algebra in Scientific Computing (Konstanz, 2001), Springer, Berlin, pp. 513-528, (2001).         [ Links ]

[23] Z. Tomovski, On Hankel transform of generalized Mathieu series, Fract. Calc. Appl. Anal. 12(1), pp. 97-107, (2009).         [ Links ]

[24] Z. Tomovski, R. Hilfer, Some bounds for alternating Mathieu type series, J. Math. Inequal. 2(1), pp. 17-26, (2008).         [ Links ]

[25] Z. Tomovski, T. K. Pogány, New upper bounds for Mathieu{type series, Banach J. Math. Anal. 3(2), pp. 9-15, (2009).

[26] Z. Tomovski, Vu Kim Tuan, On Fourier transforms and summation formulas of generalized Mathieu series, Math. Sci. Res. J. 13(1), pp. 1-10, (2009).         [ Links ]


Tibor K. Pogány
Faculty of Maritime Studies
University of Rijeka
51000 Rijeka
Croatia
e-mail : poganj@pfri.hr


Ram K. Saxena
Department of Mathematics and Statistics
Jain Narain Vyas University
Jodhpur 342002
India
e-mail : ram.saxena@yahoo.com


Received : November 2009. Accepted : January 2011