SciELO - Scientific Electronic Library Online

 
vol.30 número1Numerical range of a pair of strictly upper triangular matricesSome mathieu-type series for the I-function occuring in the fokker-planck equation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.30 no.1 Antofagasta  2011

http://dx.doi.org/10.4067/S0716-09172011000100009 

Proyecciones Journal of Mathematics
Vol. 30, N° 1, pp. 91-109, May 2011.
Universidad Católica del Norte
Antofagasta - Chile


The reconstruction of a periodic structure from its dynamical behaviour


Raúl D. Jiménez

Universidad Católica del Norte, Chile


Correspondencia a:


Abstract

This work is related to the inverse problem in vibration produced in a special type of mechanical structure known as periodic structure. This problem consist in determining the stiffness and mass parameter of the structure from the natural frequencies and vibrations modes. The problem concern with the inverse eigenvalue problem for a specially structured Jacobi matrix which contains the desired parameters. Sufficient conditions to be applied to the data to obtain a real system are derived and a numerical procedure is develop. Some numerical examples are presented

AMS classification : 15A29, 74H50.

KeyWords : Inverse eigenvalue problems, Periodic Structure.



Texto completo sólo en formato PDF

 

References

[1] Bansal A. S. Free-wave Propagation Through Combinations of Periodic and Disordered Systems. Journal of The Acoustical Society of America, Vol.67, No. 2, pp. 377-389, (1980).         [ Links ]

[2] Barcilon V. On the solution of inverse eigenvalue problems with high orders, Geophys. J. Royal Astronomical Society 39, pp. 287-298, (1974).         [ Links ]

[3] Barcilon V. A two-dimensional inverse eigenvalue problem, Inverse Problems 6, No. 1, pp. 11-20, (1990).         [ Links ]

[4] Bendiksen O. Mode localization phenomena in large space structures, AIAA Journal, Vol. 25, pp. 1241-1248, (1987).         [ Links ]

[5] Boley D. L. and Golub G. H. A survey of matrix inverse eigenvalue problems, Inverse Problems, 3, No. 4, pp. 595-622, (1987).         [ Links ]

[6] Brasil R. M. L. R. F. andMazzilli C.E.N. Influence of loading on mode localization in periodic structures, Applied Mechanics Reviews, 48, No. 11, pp. s132-s137, (1995).         [ Links ]

[7] Chu M. T and Golub G. H. Inverse Eigenvalue Problems,Oxford University Publications, (2005).         [ Links ]

[8] de Boor C. and Golub G. H. The numerically stable reconstruction of a Jacobi Matrix from spectral data, Linear Algebra Appl.,21, No3, pp.245-260, (1978).         [ Links ]

[9] Gantmacher F. R. and Krein M. G. Oscillation Matrices and Small Vibrations of Mechanical Systems (1961 Translation by US Atomic Energy Commission, Washington DC), (1950).         [ Links ]

[10] Gladwell G. M. L. Inverse Problems in Vibration, Martinus Nijhoff, Dordrecht, Netherlands, (1986).         [ Links ]

[11] Gladwell G. M. L. The reconstruction of a tridiagonal system from its frequency response at an interior point, Inverse Problems, 4,, pp. 1013-1024, (1988).         [ Links ]

[12] Hald O. Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl., 14, pp. 63-85, (1976).         [ Links ]

[13] Knobel R., and McLaughlin A reconstruction method for a two dimensional inverse eigenvalue problem, Z. Angew. Math. Phys. 45, No. 5, pp. 794-826, (1994).         [ Links ]

[14] McLaughlin J. R. and Hald H. A formula for finding a potential from nodal lines, Bull. Amerc. Math. Soc., New Series, 32, pp. 241-247, (1995).         [ Links ]

[15] Jiménez R., et als. The reconstruction of a specially structured Jacobi matrix with an application to damage detection in rods, Computer and Mathematics with Applications, (49), pp. 1815-1823, (2005).         [ Links ]

[16] Jiménez R., et als. An Inverse Eigenvalue Procedure for Damage Detection in Rods, Computer and Mathematics with Applications (47), pp. 643-657, (2004).         [ Links ]

[17] Jiménez R. Aplicacoes de Métodos Inversos em Autovalores à Deteccao de Danos, Ph.D. thesis, IME-USP, Universidade de Sao Paulo, (2002).         [ Links ]

[18] Jiménez R., Kuhl N. and Castro L. On detection of structural failure using an inverse technique on vibration, Proceedings of the third international conference on nonlinear dynamics, chaos, control and their applications in engineering sciences, Iconne 2000, Campos de Jordao, Brasil 5, pp. 11-22, (2000).         [ Links ]

[19] Ram Y. M., Gladwell G. M. L. Constructing a finite element model of a vibratory rod from eigendata, J. Sound Vibration, 169, pp. 229-237, (1994).         [ Links ]


Raúl D. Jiménez
Departamento de Matemáticas
Universidad Católica del Norte
Av. Angamos 0610
Casilla 1280
Antofagasta
Chile
e-mail : rjimen@ucn.cl


Received : February 2011. Accepted : April 2011