SciELO - Scientific Electronic Library Online

 
vol.30 número1On graphs whose chromatic transversal number is twoNumerical range of a pair of strictly upper triangular matrices índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.30 no.1 Antofagasta  2011

http://dx.doi.org/10.4067/S0716-09172011000100007 

Proyecciones Journal of Mathematics
Vol. 30, N° 1, pp. 65-75, May 2011.
Universidad Católica del Norte
Antofagasta - Chile


Examples of Morse decompositions for semigroups actions


Carlos J. Braga Barros
Hélio V. M. Tozatti
Josiney A. Souza
†

Universidade Estadual de Maringá, Brasil


Correspondencia a:


Abstract

The concepts of Morse decompositions and dynamic Morse decompositions are equivalent for flows. In this paper we show that these concepts are not equivalent for Morse decompositions of semigroup of homeomorphisms on topological spaces. We give an example of a dynamic Morse decomposition which is not a Morse decomposition on compactifications of topological spaces. Other examples of Morse decompositions are also provided.

Mathematics Subject Classification (2000) : 37B35. 37B25.

Keywords : Morse decomposition, dynamic Morse decomposition, one-point compactification.



Texto completo sólo en formato PDF

 

References

[1] Braga Barros, C. J. and Souza J. A. : Attractors and chain recurrence for semigroup actions. J. of Dyn. Diff. Eq. 22, pp. 723-740 (2010).         [ Links ]

[2] Braga Barros, C. J. and Souza, J. A. : Finest Morse decompositions for semigroup actions on Fiber Bundles. J. of Dyn. Diff. Eq. 22, pp. 741-750 (2010).         [ Links ]

[3] Braga Barros, C. J., Souza, J. A. and Reis, R. A. : Dynamic Morse decompositions for semigroup of homeomorphisms and control systems. To appear (2011).         [ Links ]

[4] Braga Barros, C. J. and San Martin, L. A. B. : Chain transitive sets for flows on flag bundles. Forum Math. 19, pp. 19-60, (2007).         [ Links ]

[5] Conley, C. : Isolated invariant sets and the Morse index. CBMS Regional Conf. Ser. in Math. 38, American Mathematical Society, (1978).         [ Links ]

[6] Conley, C. : The gradient structure of a flow: I. Ergodic Theory Dynam. Systems 8, pp. 11-26, (1988).         [ Links ]

[7] Ellis, D. B., Ellis, R. and Nerurkar, M. : The topological dynamics of semigroup actions. Trans. Amer. Math. Soc. 353, pp. 1279-1320,(2000).         [ Links ]

[8] Hirsch, W. M., Smith H. L. and Zhao, X. : Chain transitivity, attractivity and strong repellers for semidynamical systems. J. of Dyn. Diff. Eq. 13, pp. 107-131, (2001).         [ Links ]

[9] Patrâo, M. : Morse decomposition of semiflows on topological spaces. J. of Dyn. Diff. Eq. 19, pp. 181-198, (2007).         [ Links ]

[10] Patrâo, M. and San Martin, L. A. B. : Semiflows on topological spaces: chain transitivity and semigroups. J. of Dyn. Diff. Eq. 19, pp. 155-180,(2007).         [ Links ]

[11] Patrâo, M. and San Martin, L. A. B. : Morse decomposition of semiflows on fiber bundles. Discrete and Continuous Dynamical Systems (Series A) 17, pp. 113-139 (2007).         [ Links ]


Carlos J. Braga Barros
Departamento de Matemática
Universidade Estadual de Maringá
Maringá-PR Brasil 87020-900
e-mail : cjbbarros@uem.br


Hélio V. M. Tozatti
Departamento de Matemática
Universidade Estadual de Maringá
Maringá-PR Brasil 87020-900
e-mail : hvlomuert@hotmail.com


Josiney A. Souza
Departamento de Matemática
Universidade Estadual de Maringá
Maringá-PR Brasil 87020-900
e-mail : jasouza3@uem.br


Received : December 2010. Accepted : March 2011