SciELO - Scientific Electronic Library Online

 
vol.30 número1Bipartite theory of irredundant setOn the instability of solutions of an eighth order nonlinear differential equation of retarded type índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.30 no.1 Antofagasta  2011

http://dx.doi.org/10.4067/S0716-09172011000100003 

Proyecciones Journal of Mathematics
Vol. 30, N° 1, pp. 29-41, May 2011.
Universidad Católica del Norte
Antofagasta - Chile


On strongly faint e-continuous functions


Miguel Caldas1
Saeid Jafari2

1Universidade Federal Fluminense, Brasil
2College of Vestsjaelland South, Denmark



Correspondencia a:


Abstract

A new class of functions, called strongly faint e-continuous function, has been defined and studied. Relationships among strongly faint e-continuous functions and econnected spaces, e-normal spaces and e-compact spaces are investigated. Furthermore, the relationships between strongly faint e-continuous functions and graphs are also investigated.

2000 Mathematics Subject Classification :54B05, 54C08, 54D10.

Key words and phrases : Topological spaces, e-open sets, strong θ-continuity, strongly faint e-continuity.


Texto completo sólo en formato PDF

 

References

[1] M. E. Abd El-Monsef, S. N. Ei-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Assiut Univ. 12, pp. 77-90, (1983).         [ Links ]

[2] M. Caldas, On fantly e-continuous functions. Submitted.         [ Links ]

[3] M. Caldas, S. Jafari and T. Noiri, Some separation axioms via modified θ-open, Bull. of the Iranian Math. Soc., 29(2), pp. 1-12, (2003).         [ Links ]

[4] E. Ekici, On e-open sets, DP *-sets and DP C*-sets and decompositions of continuity. The Arabian J. for Sci. and Eng., 33 (2A), pp. 269-282,(2008).         [ Links ]

[5] E. Ekici, On a-open sets, A*-sets and Decompositions of continuity and super continuity, Annales Univ. Sci. Budapest, 51, pp. 39-51, (2008).         [ Links ]

[6] E. Ekici, New forms of contra continuity, Carpathian J. Math., 24 (1), pp. 37-45, (2008).         [ Links ]

[7] E. Ekici, On e*-open sets and (D, S)*-sets, Math. Moravica, Vol. 13(1), pp. 29-36, (2009).         [ Links ]

[8] E. Ekici, Some generalizations of almost contra-super-continuity, Filomat, 21 (2), pp. 31-44, (2007).         [ Links ]

[9] E. Ekici, A note on a-open sets and e*-sets, Filomat, 21 (1), pp. 89-96,(2008).         [ Links ]

[10] A.A. El-Atik, Study of some types of mappings on topological spaces, Bull.Masters. Thesis, Faculty of Science, Tanta University, Egypt,(1997).         [ Links ]

[11] S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Soc., 6, pp. 689-696, (1998).         [ Links ]

[12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68, pp. 44-46, (1961).         [ Links ]

[13] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp. 89-96, (1970).         [ Links ]

[14] P. E. Long and L. L. Herrington, The Tθ-topology and faintly continuous functions, Kyungpook Math. J., 22, pp. 7-14, (1982).         [ Links ]

[15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, pp. 47-53, (1982).         [ Links ]

[16] A. A. Nasef , Recent progress in the theory of faint continuity, Mathematical and Computer Modelling, 49, pp. 536-541, (2009).         [ Links ]

[17] A. A. Nasef , strongly β-irresolute functions, J. Natur. Sci. Math., 36, pp. 199-206, (1996).         [ Links ]

[18] A. A. Nasef and T. Noiri, Strong forms of faint continuity, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 19, pp. 21-28, (1998).         [ Links ]

[19] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15, pp. 961-970, (1965).         [ Links ]

[20] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16, pp. 161-166, (1980).         [ Links ]

[21] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica 21, pp. 357-366, (1993).         [ Links ]

[22] S. Sinharoy and S. Bandyopadhyay, On θ-completely regular and locally θ-H-closed spaces, Bull. Cal. Math. Soc., 87, pp. 19-28, (1995).         [ Links ]

[23] N. V. Velicko, H-closed topological spaces, Mat. Sb., 70 (1966), 98-112; English transl., in Amer. Math. Soc. Transl., 78, pp. 103-118,(1968).         [ Links ]


M. Caldas
Departamento de Matemática Aplicada
Universidade Federal Fluminense
Rua Mário Santos Braga, s/n
24020-140, Niterói, RJ Brazil
e-mail : gmamccs@vm.uff.br


Saeid Jafari
College of Vestsjaelland South
Herrestraede 11
4200 Slagelse
Denmark
e-mail : jafari@stofanet.dk


Received : June 2010. Accepted : March 2011