SciELO - Scientific Electronic Library Online

 
vol.29 número1GRAPHS r-POLAR SPHERICAL REALIZATIONPA NOTE ON THE UPPER RADICALS OF SEMINEARRINGS índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.29 n.1 Antofagasta mayo 2010

http://dx.doi.org/10.4067/S0716-09172010000100005 

Proyecciones Journal of Mathematics
Vol. 29, N° 1, pp. 41-48, May 2010.
Universidad Católica del Norte
Antofagasta - Chile


MEASURES OF FUZZY SUBGROUPS


Shu - Rui Shi

Capital Normal University, China


Correspondencia a:


Abstract

In this paper, we introduce the notion of degree to which a fuzzy subset is a fuzzy subgroup by means of the implication operator of [0, 1]. A fuzzy subset µ in a group G is a fuzzy subgroup if and only if its subgroup degree mg(µ) = 1. Some properties of subgroup degrees are investigated.

Keywords : Fuzzy subgroup, implication operator, subgroup degree

Subclass : [2000]03E72, 08A72, 20N25



References

[1] N. Ajmal, Homomorphism of fuzzy groups, Correspondence theorem and fuzzy quotient groups, Fuzzy Sets and Systems 61, no. 3, pp. 329– 337, (1994).        [ Links ]

[2] N. Ajmal, Fuzzy groups with sup property, Information Sciences 93, no. 3, pp. 247–264, (1996).        [ Links ]

[3] N. Ajmal, Fuzzy group theory: A comparison of different notions of product of fuzzy sets, Fuzzy Sets and Systems 110, no. 3, pp. 437–446, (2000).        [ Links ]

[4] J.M. Anthony and H. Sherwood, Fuzzy groups redefined, J.Math.Anal. Appl. 69, no. 1, pp. 124–130, (1979).        [ Links ]

[5] J.M. Anthony and H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets and Systems 7, no. 3, pp. 297–305, (1982).        [ Links ]

[6] I. Chon, Fuzzy subgroups as products, Fuzzy Sets and Systems 141, no. 3, pp. 505–508, (2004).        [ Links ]

[7] P.S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84, no. 1, pp. 264–269, (1981).        [ Links ]

[8] V.N. Dixit et al., Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems 37, no. 3, pp. 359–371, (1990).        [ Links ]

[9] V.N. Dixit et al., Union of fuzzy subgroups, Fuzzy Sets and Systems 78, no. 1, pp. 121–123, (1996).        [ Links ]

[10] M.S. Ero?glu, The homomorphic image of a fuzzy subgroup is always a fuzzy subgroup, Fuzzy Sets and Systems 33, no. 2, pp. 255–256, (1989).        [ Links ]

[11] W.J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8, no. 2, pp. 133–139, (1982).        [ Links ]

[12] N.P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Information Sciences 34, no. 3, pp. 225–239, (1984).        [ Links ]

[13] A.K. Ray, On product of fuzzy subgroups, Fuzzy Sets and Systems 105, no. 1, pp. 181–183, (1999).        [ Links ]

[14] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35, no. 3, pp. 512– 517, (1971).        [ Links ]

[15] H. Sherwood, Products of fuzzy subgroups, Fuzzy Sets and Systems 11, no. 1, 79–89, (1983).        [ Links ]

[16] W.-M. Wu, Normal fuzzy subgroups, Fuzzy Math. 1, no. 1, pp. 21–30, (1981).(in Chinese)        [ Links ]

[17] Y. Zhang, Some properties on fuzzy subgroups, Fuzzy Sets and Systems 119, no. 3, pp. 427–438, (2001).        [ Links ]

Received : December 2009. Accepted : January 2010

Shu-Rui Shi
School of Mathematics
Capital Normal University Beijing 100048
P. R. China
China
e-mail : shishurui341@126.com

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons