SciELO - Scientific Electronic Library Online

vol.28 número2ON EXISTENCE OF PERIODIC SOLUTION TO CERTAIN NONLINEAR THIRD ORDER DIFFERENTIAL EQUATIONS índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.28 n.2 Antofagasta ago. 2009 

Proyecciones Journal of Mathematics
Vol. 28, N° 2, pp. 111-123, August 2009.
Universidad Católica del Norte
Antofagasta - Chile


Govindappa Navalagi1
Md. Hanif Page2

1 B. V. B. College Of Eng. And Tech., India
2 G. H College, India

Correspondencia a:


In this paper, we introduce and study the notions of θ-generalized-semi-open function, θ-generalized- semi-closed function,pre θ-generalized-semi-open function,pre θ-generalized-semi-closed function, contra pre θ-generalized-semi-open, contra pre θ-generalized-semi-do sed function and θ-generlized-sem-homeomorphism in topological spaces and study their properties.

2000 Mathematics Subject Classification : 54A05, 51C10, 54D10; Secondary: 54C08

Keywords : θgs-closed, θgs-open, pre θgs-open, pre θgs-closed , θgs-closed function, θgs-open function, θgs-homeomorphism, θgsc-homeomorphism.


[1] S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21, pp. 717-719, (1990).         [ Links ]

[2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Uni. Ser.A (Math.), 12, pp. 5-13, (1991).         [ Links ]

[3] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math.,29 (3), pp. 375-382, (1987).         [ Links ]

[4] M. Caldas and S. Jafri, On θ-semi generalized closed sets in topology, Kyngpook Math. J., 43, pp. 135-148, (2003).         [ Links ]

[5] S. G. Crossely and S.K. Hildbrand, On semi-closure. Texas J. Sci, 22, pp. 99-112, (1971).         [ Links ]

[6] R. Devi , K. Balachandran and H. Maki, Semi-generalized and generalized semi maps, Mem. Fac. Sci. Kochi. Uni. Ser. A (Math.), 14, pp. 41-54, (1993).         [ Links ]

[7] G. Di Maio, T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18, pp. 226-233, (1987).         [ Links ]

[8] J. Dontechev and H. Maki, On θ-generalized closed sets, Internat. J. Math.and Math. Sci. 22, pp. 239-249, (1999).         [ Links ]

[9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly 70, pp. 36-41, (1963).         [ Links ]

[10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp. 89-96, (1970).         [ Links ]

[11] H. Maki, P. Sundarani and K. Balachandran, On generalized homeomorphismsin topological spaces, Bull. Fukuoka Univ. Ed. III , 40 (1991).         [ Links ]

[12] Govindappa Navalagi and Md. Hanif Page, On θgs-Neighbiurhoods, accepted for publication, Indian Journal of Mathematics and Mathematical Sciences, Vol. 2, 2 (Dec.2007).         [ Links ]

[13] Govindappa Navalagi and Md. Hanif Page, On some more properties of θgs- Neighbiurhoods (Communicated).         [ Links ]

[14] Govindappa Navalagi and Md. Hanif Page, On θgs-continuity and θgs-irresoluteness (Communicated).         [ Links ]

[15] Govindappa Navalagi and Md. Hanif Page, On some separation axioms via θgs- open sets (Communicated).         [ Links ]

[16] N. V. Velicko, On H-closed topological spaces, Amer. Math. Soc. Transí., 78, pp. 103-118, (1968).         [ Links ]

Department of Mathematics
KLE Society's
G. H. College
Haveri-581 110
e-mail :

Department of Mathematics
B. V. B. College of Eng. and Tech.
e-mail :

Received : March 2008. Accepted : March 2009

Creative Commons License