SciELO - Scientific Electronic Library Online

vol.25 número3UNE REMARQUE SUR LA TRACE DE LA TORSION ET LE TENSEUR DE RICCIA NEW NOTION OF SP-COMPACT L-FUZZY SETS índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.25 n.3 Antofagasta dic. 2006 


Vol. 25, No 3, pp. 237-247, December 2006.
Universidad Católica del Norte
Antofagasta - Chile







The aim of this paper is to study L-fuzzy closure operator in Lfuzzy topological spaces. We introduce two kinds of L-fuzzy closure operators from different point view and prove that both L-TFCS.the category of topological L-fuzzy closure spaces.and L-PTFCS.the category of topological pointwise L-fuzzy closure paces.are isomorphic to L-FCTOP.

Key words: L-fuzzy co-topology; fuzzy remote neighborhood system; L-fuzzy closure operator



[1] J. Adamek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories,John Wiley and Sons, Inc., (1990).         [ Links ]

[2] C. L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24, pp. 182—193, (1968).         [ Links ]

[3] K. C. Chattopadhyay, S. K. Samanta, Fuzzy topology: fuzzy closureoperator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets andSystems 54, pp. 207—212, (1993).         [ Links ]

[4] Gierz, et al., A Compendium of Continuous Lattices, Springer, Berlin,(1980).         [ Links ]

[5] U. Höhle, Upper semicontinuous fuzzy sets and applications,J.Math.Anal.Appl. 78, pp. 659—673, (1980).         [ Links ]

[6] U. Höhle, A.P. Šostak, Axiomatic foundations of fixed-basis fuzzytopology, Chapter 3 in: U. Höhle, S.E. Rodabaugh (Eds), Mathematics of Fuzzy Sets-Logic, Topology, and Measure Theory, Kluwer Academic Publishers (Boston/Dordrecht/London), pp. 123—272, (1999).         [ Links ]

[7] Y. C. Kim, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems 133,pp. 277—297, (2003).         [ Links ]

[8] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz, Poznan,Poland, (1985).         [ Links ]

[9] Y. Liu, M. Luo, Fuzzy Topology, World Scientific Publishing Co.Pte.Ltd, Singapore, (1997).         [ Links ]

[10] S. E. Rodabaugh, Powerset operator foundations for poslat fuzy settheories and topologies, Chapter 2 in [6].         [ Links ]

[11] S. E. Rodabaugh, Categorical foundations of variable-basis fuzzytopology, Chapter 4 in [6].         [ Links ]

[12] A. P. Šostak, On a fuzzy topological structure, Rendiconti CiecoloMatematico Palermo (Suppl.Ser.II) 11, pp. 89—103, (1985).         [ Links ]

[13] A.P. Šostak,, Basic structures of fuzzy topology, J. Math. Sci. 78 (6),pp. 662—701, (1996).         [ Links ]

[14] R. Lowen, L. Xu, Alternative characterizations of FNCS, Fuzzy Setsand Systems, 104, pp. 381-391, (1999).         [ Links ]

[15] Y. Yue , J. Fang , Categories isomorphic to the Kubiak-Šostak extensionof TML, Fuzzy Sets and Systems, 157, pp. 832-842 (2006).         [ Links ]


Yueli Yue
Department of Mathematics
Beijing Institute of Technology
Beijing, 100081,
P. R. China

e-mail :

Fu-Gui Shi
Department of Mathematics
Ocean University of China,
Qingdao, 266071,
P. R. China
e-mail :


Received : May 2006. Accepted : October 2006

*The project is supported by the National Natural Science Foundation of China (10371079) and the Base Research Foundation of Beijing Institute of Technology.