SciELO - Scientific Electronic Library Online

 
vol.24 número1SPECTRAL PROPERTIES OF A NON SELFADJOINT SYSTEM OF DIFFERENTIAL EQUATIONS WITH A SPECTRAL PARAMETER IN THE BOUNDARY CONDITIONA NOTE ON THE FUNDAMENTAL GROUP OF A ONE-POINT EXTENSION índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.24 n.1 Antofagasta mayo 2005

http://dx.doi.org/10.4067/S0716-09172005000100006 

 

Proyecciones
Vol. 24, No 1, pp. 65-78, May 2005.
Universidad Católica del Norte
Antofagasta - Chile

REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*

RICARDO L. SOTO
Universidad Católica del Norte, Chile.

Correspondencia a :


ABSTRACT

Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n × n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ.

Key words: symmetric nonnegative inverse eigenvalue problem.

AMS classification: 15A18, 15A51.


References

[1] A. Borobia, On the Nonnegative Eigenvalue Problem, Linear Algebra Appl. 223-224, pp. 131-140, (1995).        [ Links ]

[2] A. Borobia, J. Moro, R. Soto, Negativity compensation in the nonnegative inverse eigenvalue problem, Linear Algebra Appl. 393, pp. 73-89,(2004).        [ Links ]

[3] A. Brauer, Limits for the characteristic roots of a matrix. IV: Aplications to stochastic matrices, Duke Math. J., 19, pp. 75-91, (1952).        [ Links ]

[4] M. Fiedler, Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl. 9, pp. 119-142, (1974).        [ Links ]

[5] C. R. Johnson, T. J. La.ey, R. Loewy, The real and the symmetric nonnegative inverse eigenvalue problems are di.erent, Proc. AMS 124, pp. 3647-3651, (1996).        [ Links ]

[6] R. Kellogg, Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl. 4, pp. 191-204, (1971).        [ Links ]

[7] T. J. La.ey, E. Meehan, A characterization of trace zero nonnegative 5x5 matrices, Linear Algebra Appl. pp. 302-303, pp. 295-302, (1999).        [ Links ]

[8] R. Loewy, D. London, A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6, pp. 83-90, (1978).        [ Links ]

[9] H. Perfect, Methods of constructing certain stochastic matrices, Duke Math. J. 20, pp. 395-404, (1953).        [ Links ]

[10] N. Radwan, An inverse eigenvalue problem for symmetric and normal matrices, Linear Algebra Appl. 248, pp. 101-109, (1996).        [ Links ]

[11] R. Reams, An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra 41, pp. 367-375, (1996).        [ Links ]

[12] F. Salzmann, A note on eigenvalues of nonnegative matrices, Linear Algebra Appl. 5., pp. 329-338, (1972).         [ Links ]

[13] R. Soto, Existence and construction of nonnegative matrices with prescribed spectrum, Linear Algebra Appl. 369, pp. 169-184, (2003).        [ Links ]

[14] R. Soto, A. Borobia, J. Moro, On the comparison of some realizability criteria for the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 396, pp. 223-241, (2005).        [ Links ]

[15] G. Soules, Constructing symmetric nonnegative matrices, Linear and Multilinear Algebra 13, pp. 241-251, (1983).        [ Links ]

[16] H. R. Suleimanova, Stochastic matrices with real characteristic values, Dokl. Akad. Nauk SSSR 66, pp. 343-345, (1949).        [ Links ]

[17] G. Wuwen, An inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl. 249, pp. 67-78, (1996).        [ Links ]

Received : March 2005, Accepted : May 2005.

*Supported by Fondecyt 1050026, Chile.

Ricardo L. Soto
Departamento de Matemáticas
Universidad Católica del Norte
Casilla 1280
Antofagasta
Chile
e-mail : rsoto@ucn.cl