SciELO - Scientific Electronic Library Online

 
vol.20 número2SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENTRIGID SPHERICAL HYPERSURFACES IN C² índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.20 n.2 Antofagasta ago. 2001

http://dx.doi.org/10.4067/S0716-09172001000200004 

ATTRACTORS POINTS IN THE
AUTOSUBSTITUTION*

EDUARDO MONTENEGRO Universidad Técnica FedericoSanta María, Chile
and
EDUARDO CABRERA
Universidad de Playa Ancha, Valparaíso - Chile
 
 

Abstract
   

Recently an operation of graphs called substitution has been incorporated. In an informal way, the substitution consists in the replacement of a vertex for a graph. This new graph is characterized through a function (of substitution) that it could be self definable. The substitution of each vertex of a graph G, through injectives functions of substitution, by the same G graph will be called autosubstitution and denoted by G(G). If X represents the class of all the simple and finite graphs and w is an application of X in X, defined by w (G) = G (G), then it is interest in studying the dynamic properties of w and the construction of some algorithms that they permit the generating of fractal images. In function of the above-mentioned it is proposed to analyze the autosubstitution for graphs simple and finite. Framed in the area of the Graph Dynamics, inside the area of the Graph Theory, the present work will use, preferably, simple and finite graph.    

Key words : Graph, subtitution of graph, discrete dynamical systems.

AMS subject classifications : 05C25 ; 05C35



* Work financed by the General Address of Investigation of the UPLACED trougth the Project CNEI 060001.

 

REFERENCES

[1] M. BARNSLEY, Fractal Everywhere, Academic Press, (1988).         [ Links ]

[2] A. BRONDSTED, An Introduction to Convex Polytopes, Springer Verlag, New York; Heidelberg, Berlin, (1983).         [ Links ]

[3] G. CHARTRAND, LESNIAIK, L., Graphs and Digraphs, Wadsworth and Brooks/Cole. Advanced Books and Software Pacific. Grove, C. A., (1996).         [ Links ]

[4] G. CHARTRAND AND O.OELLERMANN, Applied and Algorithmic Graph Theory, McGraw-Hill., Inc., (1993).         [ Links ]

[5] H. COXETER, Regular Polytopes. Third Edition, Dover Publication, Inc, (1973).         [ Links ]

[6] R. DEVANEY, Introduction to Chaotic Dynamical Systems, 2nd edition, Addison-Wesley, (1989).         [ Links ]

[7] R. HOLMGREN, A First Course in Discrete Dynamical Systems, Sringer-Verlag, (1994).         [ Links ]

[8] A.N. KOLMOGOROV & S.V.FOMIN, Introductory Real Analysis, Dover Publications, INC., New York, (1975).         [ Links ]

[9] E. MONTENEGRO, R. SALAZAR, A result about the incidents edges in the graphs Mk, Discrete Mathematics, 122, pp. 277-280, (1993).         [ Links ]

[10] E. MONTENEGRO, D. POWERS, S. RUIZ, R. SALAZAR, Spectra of related graphs and Self Reproducing Polyhedra, Proyecciones, 11, No 1, pp. 01-09, (1992).         [ Links ]

[11] E. MONTENEGRO, D. POWERS, S. RUIZ, R. SALAZAR, Automorphism Group and hamiltonian properties preserved by Substitution, Scientia, Serie A Math. Sciences 4, pp. 57-67, (1993).         [ Links ]

[12] E. PRISNER, Graph Dynamics, version 2B, Universität Hamburg, Hamburg, F.R. Germany, (1994).         [ Links ]

[13] R. ROCKAFELLAR, Convex Analysis, Princeton University Press, (1970).             [ Links ]

Received : May, 2000

Eduardo Montenegro

Instituto de Matemáticas

Universidad Católica de Valparaíso

Blanco Viel N 596

Cerro Baron

Valparaíso

Chile

e-mail : emontenv@ucv.cl

and

Eduardo Cabrera

Facultad de Ciencias Naturales y Exactas

Universidad de Playa Ancha

Casilla 34-V

Valparaíso

Chile

e- mail : emontene@upa.cl