SciELO - Scientific Electronic Library Online

 
vol.44 número4SISTEMA DE EXTRACCION LIQUIDO-LIQUIDO EN CONTINUO CON SEPARADOR DE FASES TIPO SANDWICH PARA LA DETERMINACION DE COBRE AL ESTADO DEL COMPLEJO COBRE(I)-BATOCUPROINAQUANTITY AND QUALITY OF b-CAROTENE PRODUCED BY TWO STRAINS OF DUNALIELLA SALINA (TEODORESCO 1905) FROM THE NORTH OF CHILE índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Boletín de la Sociedad Chilena de Química

versión impresa ISSN 0366-1644

Bol. Soc. Chil. Quím. v.44 n.4 Concepción dic. 1999

http://dx.doi.org/10.4067/S0366-16441999000400009 

THE CRYSTAL STRUCTURE OF A NOVEL SULFENAMIDE: (N,N-DIBENZYL)BENCENESULFENAMIDE

IVAN BRITO1*, CARLOS DIAZ2, GUILLERMO GONZALEZ2,
MATIAS LOPEZ RODRIGUEZ3 AND V. MANRIQUEZ2

1Universidad de Antofagasta, Facultad de Ciencias Básicas, Casilla 170, Antofagasta, Chile.
2Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1, Chile.
3Centro de Productos Naturales Orgánicos "Antonio González", Instituto Universitario de Bio-Orgánica. Universidad de La Laguna, Carretera de la Esperanza, 2 La Laguna, Tenerife, Spain.
(Received: May 30, 1997 - Accepted: August 26, 1999)

SUMMARY

The crystal structure of (N,N-dibenzyl)bencenesulfenamide, (C6H5)SN(CH2C 6H5)2 is described and compared with other sulfenamides and with its chromium pentacarbonyl complex. This structure belongs to a type of divalent sulphur compound and crystallized in the triclinic system, space group P ^ with a = 5.552(3), b = 11.527(4), c = 13.670(8) Å, a = 79.30(4), b = 89.90(4), r = 89.70(3)° and Dx = 1.284 g cm-3 with Z=2. The N-S distance is 1.681(10) Å, which is significantly shorter than the reported for its chromium pentacarbonyl complex and than a single S-N bond [1.74 Å].

KEY WORDS: Sulfenamides, sulfenic acid derivatives, divalent sulfur compounds.

RESUMEN

La estructura cristalina de (N,N-dibenzyl)bencenesulfenamida, (C6H5)SN(CH2C 6H5)2 es descrita y comparada con otras sulfenamidas y con su complejo de cromo pentacarbonilo. Esta estructura pertenece a un tipo de compuestos de azufre divalente y cristaliza en el sistema triclinico, grupo espacial P^, con a= 5,552(3), b = 11,527(4), c = 13,670(8) Å, a = 79,30(4), b = 89,90(4), r = 89,70(3)° and Dx = 1,284 g cm-3 conZ=2. La distancia azufre nitrógeno es 1,681(10) Å, la cuál es significativamente más corta que la informada para su complejo de cromo pentacarbonilo y que para un enlce simple S-N.

PALABRAS CLAVES: Sulfenamidas, derivados ácidos sulfénicos, compuestos de azufre divalente.

*To whom correspondence should be addressed.

INTRODUCTION

Sulfenmides R3-S-NR1R2 have attracted much attention during recent years, due to their interesting chemical and biological properties1,2). Such an interest also arises from their conformational properties modulated by a partially hindered rotation around the S-N bond which has stimulated several dynamic spectroscopic and structural studies2). As part of our studies on the coordination properties of compounds having sulphur-nitrogen bond3-7), we report here the crystal structure of a novel sulfenamide. The crystal structure can be described in terms of discrete molecules with one molecules with one molecule in the asymmetric unit.

EXPERIMENTAL

Synthesis was carried out by reaction of C6H5-S-Cl and NH(CH2C6H5)2 (molar ratio1:1.5) in n-hexane for 2h at -12°C. All operations were carried out under a nitrogen atmosphere. Crystallization was from benzene. A single crystal with dimension 0.07 x 0.09 x 0.4 mm was used for measurements on a Siemens AED diffractometer, with graphite-monochomatized Cuka radiation, w:q scan mode. The lattice constants were obtained from least squares refinement of 20 reflections in the interval 18 < 2q < 40° and two standard reflections (1 0 4 and -1 0 4) monitored every hour showed no significant intensity decay (±3%). Of the 1530 data measured with 3 < 2q < 120°, 1310 data having 1 2s(I), (index range h = 0®3, k = -12®12, I = -12®12) were considered observed and used for the structure determination and refinement, corrected for Lorentz-polarization. The structure was solved by direct methods8) and refined on F by full-matrix least-squares9). During the isotropic refinement for non-H atoms an empirical absorption correction was carried out (correction range 0.783 to 1.485)10). Some H atoms were located from difference syntheses and others were placed in calculated positions11), but all were included with a fixed isotropic contribution (U = 0.06 Å2) and not refined; refinement converged to R = 0.043, Rw = 0.052, S = 0.963 for 199 refined parameters. A weighting scheme to obtain flat dependence of D2F vs Fo and sinq/l was performed12). DF map were 0.32 and 0.35 e Å-3. Atomic scattering factors were obtained from the International Tables for X-Ray Crystallography13). Geometrical calculations were made with PARST14).

RESULTS AND DISCUSSION

Table I gives the fractional atomic coordinates and equivalent isotropic displacement parameters for all non-H atoms. The molecular structure of the title compound including the atom-numbering scheme, is illustrated in Figure 1. Table II shows selected bond lengths and bond angles. The N-S distance of 1.681(10) Å is shorter than that expected for a single S-N bond [1.74 Å] and similar to that reported in N,N-(dicyclohexyl)bencenesulfenamide [1.684Å], suggesting some intramolecular (p-d)p interaction between the N and S atoms, as has been indicated for related compounds on the basis of photoelectron spectroscopy and crystal data3-7). On the other hand, is much closer to values characteristic of RS-NX2 bonds involving planar N atoms [mean value 1.707(19) Å] than the examples involving pyramidal N atoms [1.765(3) Å]15). Structural comparison with its chromium carbonyl complex3) shows expected similarities in length and bond angles. However the ligand sulfenamide bound to the Cr(CO)5 fragment, via the sulphur atom, has caused a lenthening in the S-N bond by 0.025 Å. The C-S bond 1.738(10) Å is significantly shorter than that reported in its Chromium carbonyl complex [1.812(8) Å]3); triphenylmethanesulfenamide [1.873(2) Å]16), and similar N,N-(dicyclohexyl)bencenesulfenamide [1.765(3) Å] 4). The C-N distances are in the range 1.459(10)-1.489(13) Å. The angles about the nitrogen reflect a distorted pyramidal geometry, as shown straightforward by comparison of the addition of the bond angles at N-atom of about 341(6)° with the values 328° and 360° corresponding to the nitrogen atom hybridizations sp3 (pyramidal substitution) and sp2 (planar substitution) respectively. The exact constitution of the type of hybridizations of the N-atom could be calculated from the bond angles about of the nitrogen17) using there equations: liljcosqij = -1 and S(1)/1+l2i = +1, were qij is the angle between i and j ligands, and 1/1+l2i is the fractional character s in the orbital directly used in the bond to i ligand. The calculation shows an sp2.49 hybridizations for the N-atom. The Csp3-C(aryl) distance are essentially identical in the range 1.500(16)-1.537(18), mean 1.519(17) are all well lower the upper quartile value to 1.521 Å for Csp3-C(aryl) bonds18). There are no unusual bond angles in the phenyl rings. The individual phenyl rings are planar [max. deviation 0.015(12)°]. The C6-S-N plane forms a dehedral angle of 93.0(6)° with the plane C-N-C plane, (90° for the torsional fundamental state) and is slightly upper than those found for chiral sulfenamides19).

The structure was solved by direct methods8) and refined on F by full-matrix least-squares9). Other programs include, DIFABS20) and ORTEP21).

TABLE I. Atomic coordinates (Å) and equivalent isotropic temperature factors (Å2 x 103).
Ueq = (1/3) SiSjUijai *aj*aiaj

Atom
x
y
z

Ueq

S

0.3023(8) 0.2933(3) -0.2056(2) 55(2)
N 0.1923(10) 0.2383(9) -0.3020(6) 42(5)
Cl 0.1042(10) 0.4000(9) -0.1773(8) 50(7)
C2 0.0974(15) 0.5138(8) -0.2340(7) 66(8)
C3 -0.0626(14) 0.5960(7) -0.2144(9) 89(9)
C4 -0.2194(12) 0.5630(8) -0.1374(10) 91(9)
C5 -0.2283(10) 0.4490(9) -0.0804(8) 78(6)
C6 -0.0643(11) 0.3702(11) -0.1024(8) 67(5)
C7 0.2004(10) 0.3232(10) -0.3984(8) 62(6)
C8 0.1914(11) 0.2541(11) -0.4843(8) 51(6)
C9 0.3634(11) 0.1701(13) -0.4922(9) 55(5)
C10 0.1052(12) 0.1052(12) -0.5711(10) 62(5)
C11 0.1686(10) 0.1272(10) -0.6374(9) 68(5)
C12 -0.0048(10) 0.2080(11) -0.6302(9) 72(8)
C13 0.0187(12) 0.2701(9) -0.5532(10) 60(9)
C14 -0.0413(12) 0.1801(10) -0.2822(10) 57(6)
C15 -0.0307(13) 0.0690(10) -0.2053(10) 47(6)
C16 -0.2046(10) 0.0398(10) -0.1334(10) 58(7)
C17 -0.2120(10) -0.0670(12) -0.0661(10) 62(7)
C18 -0.0243(12) -0.1427(11) -0.0691(10) 59(8)
C19 0.1586(10) -0.1212(10) -0.1382(10) 61(6)
C20 0.1595(10) -0.0092(10) -0.2072(8) 50(3)

FIG. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

TABLE II. Selected geometric parameters (Å, °).


S-N 1.681(10) N-S-C1 109.4(5) C14-C15-C20 119.2(9)
S-C 1.738(10) S-N-C14 113.9(6) C7-C8-C9 120.6(9)
N-C7 1.489(13) S-N-C7 113.6(6) C7-C8-C13 122.9(9)
N-C14 1.495(10) C7-N-C14 113.4(7) S-C1-C2 121.5(7)
C7-C8 1.537(18) C8-C7-N1 109.0(8) S-C1-C6 119.9(6)
C14-C15 1.500(16) N1-C14-C15 113.7(8) Mean C-C-C in Ph 120.0(9)
Mean C-C in Ph 1.374(14) C14-C15-C16 122.8(10)    

ACKNOWLEDGEMENTS

Financial support from DGI (Grant G003) is gratefully acknowledged. The diffraction spectra was recorded in the Instituto Universitario de Bio-Orgánica, Tenerife, Spain.

REFERENCES

1. L. Craine, M. Raban. Chem. Rev., 89, 689 (1989).         [ Links ]

2. M. Raban & D. Kost. Tetrahedron, 40, 3348 (1984).         [ Links ]

3. M.L. Rodríguez, C. Ruiz-Pérez, I. Brito, C. Díaz, J. Cuevas, G. González and V. Manríquez. J. Organomet. Chem., 377, 235 (1989).         [ Links ]

4. M.L. Rodríguez, I. Brito, C. Díaz, G. González, V. Manríquez. J. Organomet. Chem. , 25, 49 (1992).         [ Links ]

5. C. Díaz, V. Manríquez, G. González, I. Brito, M.L. Rodríguez. Bol. Soc. Chil. Quím., 38, 83 (1993).         [ Links ]

6. I. Chadwick, C. Díaz, G. González, M.A. Santa Ana, N. Yutronic. J. Chem. Soc. Dalton Trans., 1867 (1986).         [ Links ]

7. G. González, C. Díaz, H. Binder. Z. Natuforsch., 436, 513 (1988).         [ Links ]

8. G.M. Sheldrick. SHELXS86. Program for crystal structure determination, Univ. of Gottingen (1986).         [ Links ]

9. J.M. Stewart, F.A. Kundell, J.C. Baldwin. The XRAY80 system.
Tech. Rep. Tr-446 Computer Science Center, Univ. of Mariland, College Park, Mariland, USA (1986).         [ Links ]

10. N. Walter and D. Stuart. DIFABS. Acta Crystallogr., Sect. A, 39, 158 (1983).         [ Links ]

11. J. Fayos, M. Martínez-Ripoll. HSEARCH. Instituto Rocasolano, C.S.I.C., Serrano 119, 28006, Madrid, Spain (1980).         [ Links ]

12. M. Martínez-Ripoll, F. Cano. PESOS. Instituto Rocasolano, C.S.I.C. Serrano 119, 28006, Madrid, Spain.         [ Links ]

13. Kynoch Press, Birmingham (present distributor: Kluwer Academic Publishers, Dordrecht), 1974.         [ Links ]

14. M. Nardelli. Comp. Chem., 7, 95-98 (1983).         [ Links ]

15. S. Auricchio, S. Brückner, L. Malpezzi Giunchi, V.A. Kozinsky & O.V. Zelenskaja. J. heterocycl. Chem., 17, 1217-1219 (1980).         [ Links ]

16. C. Glidewell & G. Fergunson. Acta Cryst., C50, 1362-1366 (1994).         [ Links ]

17. K. Mislow. Introduction to stereochemistry. W.A. Benjamin, New York (1965).         [ Links ]

18. J. Kay, M. Glick, M. Raban. J. Am. Chem. Soc., 93, 5224 (1971).         [ Links ]

19. L. Pauling. The nature of the chemical bond, 3rd Ed. Ithaca Cornell Univ. Press, 1960.         [ Links ]

20. N. Walker, D. Stuart. Acta Cryst., A39, 158 (1983).         [ Links ]

21. L. Zsolnai, H. Pritzkow. ORTEP. Program for Personal Computer. Original modified in Univ. Heldelberg (1994).         [ Links ]