SciELO - Scientific Electronic Library Online

 
vol.12 número2Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processesA note on generalized topological spaces and preorder índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Cubo (Temuco)

versión On-line ISSN 0719-0646

Resumen

RUMP, Wolfgang. The tree of primes in a field. Cubo [online]. 2010, vol.12, n.2, pp. 97-121. ISSN 0719-0646.  http://dx.doi.org/10.4067/S0719-06462010000200007.

The product formula of algebraic number theory connects finite and infinite primes in a stringent way, a fact, while not hard to be checked, that has never ceased to be tantalizing. We propose a new concept of prime for any field and investigate some of its properties. There are algebraic primes, corresponding to valuations, such that every prime contains a largest algebraic one. For a number field, this algebraic part is zero just for the infinite primes. It is shown that the primes of any field form a tree with a kind of self-similar structure, and there is a binary operation on the primes, unexplored even for the rationals. Every prime defines a topology on the field, and each compact prime gives rise to a unique Haar measure, playing an essential part in the product formula.

Palabras llave : prime; valuation; product formula.

        · resumen en Español     · texto en Inglés     · pdf en Inglés