SciELO - Scientific Electronic Library Online

 
vol.19 número3Identificación de documentos multilingües relacionados mediante algoritmos de clustering de hormigasAnálisis de rendimiento académico estudiantil usando data warehouse y redes neuronales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Ingeniare. Revista chilena de ingeniería

versión On-line ISSN 0718-3305

Resumen

JARA, José Luis; CHACON, Max  y  ZELAYA, Gonzalo. Empirical evaluation of three machine learning method for automatic classification of neoplastic diagnoses. Ingeniare. Rev. chil. ing. [online]. 2011, vol.19, n.3, pp. 359-368. ISSN 0718-3305.  http://dx.doi.org/10.4067/S0718-33052011000300006.

Diagnoses are a valuable source of information for evaluating a health system. However, they are not used extensively by information systems because diagnoses are normally written in natural language. This work empirically evaluates three machine learning methods to automatically assign codes from the International Classification of Diseases (10th Revision) to 3,335 distinct diagnoses of neoplasms obtained from UMLS®. This evaluation is conducted on three different types of preprocessing. The results are encouraging: a well-known rule induction method and maximum entropy models achieve 90% accuracy in a balanced cross-validation experiment.

Palabras llave : Clinical coding; controlled vocabulary; international classification of diseases; machine learning; natural language processing.

        · resumen en Español     · texto en Inglés     · pdf en Inglés