SciELO - Scientific Electronic Library Online

 
vol.40 número3Establecimiento al cultivo in vitro de Luma chequen a partir de segmentos nodalesCaracterización físico-química de los granos de frijol común en condiciones de almacenamiento natural y acelerada índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Ciencia e investigación agraria

versão On-line ISSN 0718-1620

Resumo

COIMBRA DE ARAUJO, Everton; JOHANN, Jerry A; URIBE-OPAZO, Miguel A  e  CAMARGO, Eduardo C.G. Classification of areas associated with soybean yield and agrometeorological variables through fuzzy clustering. Cienc. Inv. Agr. [online]. 2013, vol.40, n.3, pp.617-627. ISSN 0718-1620.  http://dx.doi.org/10.4067/S0718-16202013000300014.

E.C. Araújo, J.A. Johann, M.A. Uribe-Opazo, and E.C.G. Camargo. 2013. Classification of areas associated with soybean yield and agrometeorological variables through fuzzy clustering. Cien. Inv. Agr. 40(3): 617-627. This study aimed to apply an approach based on fuzzy clustering for the classification of areas associated with soybean yield combined with the following agrometeorological variables: rainfall, average air temperature and average global solar radiation. The study was conducted with 48 municipalities in the western region of Paraná State, Brazil, with data from the crop-year 2007/2008. Through the fuzzy c-means algorithm, it was possible to form groups of municipalities that were similar in soybean yield using the Method of Decision by the Higher Degree of Relevance (MDMGP) and Method of Decision by Threshold β (β MDL). Subsequently, the identification of the appropriate number of clusters was obtained using Modified Partition Entropy (MPE). To measure the degree of similarity for each cluster, the Cluster Similarity Index (ISCl) was constructed and implemented. From the perspective of this study, the method used was adequate, allowing the identification of clusters of municipalities with degrees of similarities between 63 and 94%.

Palavras-chave : Agrometeorological variables; classification of areas; Fuzzy c-Means; methods of decision; similarity index; soybean yield.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons