SciELO - Scientific Electronic Library Online

 
vol.21 número5Calidad del Agua para Actividades Recreativas del Río Hardy en la Región Fronteriza México-Estados UnidosParámetros de Transferencia de Materia en el Secado de Frutas, sin Necesidad de Datos de Disminución de Volumen índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Información tecnológica

versión On-line ISSN 0718-0764

Resumen

GARCIA, Ignacio; RODRIGUEZ, José G; LOPEZ, Felipe  y  TENORIO, Yenisse M. Transporte de Contaminantes en Aguas Subterráneas mediante Redes Neuronales Artificiales. Inf. tecnol. [online]. 2010, vol.21, n.5, pp. 79-86. ISSN 0718-0764.  http://dx.doi.org/10.4067/S0718-07642010000500011.

An Artificial Neural Network model was developed for predicting pollutants transport (cupper and cadmium) in saturated, homogeneous and isotropic media for several textural classes. The models were trained and evaluated from the equation proposed by Ogata and Banks that considers advective and diffusive terms. Backpropagation structures were developed, using a three-layer architecture considering 4, 7 and 10 neurons in the hidden layer. For training and simulation the Levenberg-Marquardt algorithm was used, the Log-sigmoid transfer function was applied in the hidden layer and a linear function was applied in the output layer. The results demónstrate that the Artificial Neural Network is a useful mathematical tool; it has low computational requirements and allows estimating the transport of pollutants in saturated, homogeneous and isotropic media.

Palabras llave : artificial neural networks; backpropagation; pollutants transport; textural classe.

        · resumen en Español     · texto en Español     · pdf en Español