SciELO - Scientific Electronic Library Online

 
vol.24 número1SPECTRAL PROPERTIES OF A NON SELFADJOINT SYSTEM OF DIFFERENTIAL EQUATIONS WITH A SPECTRAL PARAMETER IN THE BOUNDARY CONDITIONA NOTE ON THE FUNDAMENTAL GROUP OF A ONE-POINT EXTENSION índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Resumen

SOTO, RICARDO L. REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*. Proyecciones (Antofagasta) [online]. 2005, vol.24, n.1, pp. 65-78. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172005000100006.

Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ

Palabras clave : symmetric nonnegative inverse eigenvalue problem.

        · texto en Inglés     · pdf en Inglés