SciELO - Scientific Electronic Library Online

 
vol.24 número1A NOTE ON POLYNOMIAL CHARACTERIZATIONS OF ASPLUND SPACES índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Resumen

SHU-PING, LI. SEQUENTIAL S*-COMPACTNESS IN L-TOPOLOGICAL SPACES*. Proyecciones (Antofagasta) [online]. 2005, vol.24, n.1, pp. 1-11. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172005000100001.

In this paper, a new notion of sequential compactness is introduced in L-topological spaces, which is called sequentially S*-compactness. If L = [0, 1], sequential ultra-compactness, sequential N-compactness and sequential strong compactness imply sequential S*-compactness, and sequential S*-compactness implies sequential F-compactness. The intersection of a sequentially S*-compact L-set and a closed L-set is sequentially S*-compact. The continuous image of an sequentially S*-compact L-set is sequentially S*-compact. A weakly induced L-space (X, T ) is sequentially S*-compact if and only if (X, [T ]) is sequential compact. The countable product of sequential S*-compact L-sets is sequentially S*-compact

Palabras clave : L-topology; constant a-sequence; weak O-cluster point; weak O-limit point; sequentially S*-compactness.

        · texto en Inglés     · pdf en Inglés