SciELO - Scientific Electronic Library Online

 
vol.23 número2SOLVABILITY OF COMMUTATIVE POWER-ASSOCIATIVE NILALGEBRAS OF NILINDEX 4 AND DIMENSIONTHÉORÈMES DE ZILBER-EILEMBERG ET DE BROWN EN HOMOLOGIE l1 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Resumen

ROJO, OSCAR. THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE. Proyecciones (Antofagasta) [online]. 2004, vol.23, n.2, pp.131-149. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172004000200006.

Let p > 1 be an integer. We consider an unweighted balanced tree Bpk of k levels with a root vertex of degree 2p, vertices from the level 2 until the level (k - 1) of degree 2p +1 and vertices in the level k of degree 1. The case p = 1 it was studied in [8, 9, 10]. We prove that the spectrum of the Laplacian matrix L (Bpk) is σ (L (Bpk)) = Ukj =1σ (T(p) j where, for 1< j < k < 1, T(p)j is the j ×j principal submatrix of the tridiagonal k×k singular matrix T(p)k , scanear fórmula We derive that the multiplicity of each eigenvalue of Tj , as an eigenvalue of L (Bpk) , is at least 2(2p-1)2(k-j-1)p . Moreover, we show that the multiplicity of the eigenvalue λ = 1 of L (Bpk) is exactly 2(2p-1)2(k-2)p. Finally, we prove that 3, 7 σ (L (B2k)) if and only if k is a multiple of 3, that 5 σ (L (B2k) if and only if k is an even number, and that no others integer eigenvalues exist for L (B2k).

Palabras clave : Tree; balanced tree; binary tree; n-ary tree; Laplacian matrix.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons