SciELO - Scientific Electronic Library Online

 
vol.36 número1CARACTERÍSTICAS DE SECTORES DE PASTOS CORTOS Y ESPECIES HERBÁCEAS EN LAS ISLAS FALKLAND (MALVINAS) Y SU MANEJO PARA EL PASTOREO OVINOBIODIVERSIDAD DE MACROHONGOS DE LA RESERVA NACIONAL MAGALLANES índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Anales del Instituto de la Patagonia

versión On-line ISSN 0718-686X

Anales Instituto Patagonia (Chile) v.36 n.1 Punta Arenas  2008

http://dx.doi.org/10.4067/S0718-686X2008000100002 

 

Anales Instituto Patagonia (Chile), 2008. 36: 25-34

ARTÍCULOS

 

A NULL MODEL FOR EXPLAIN CRUSTACEAN ZOOPLANKTON SPECIES ASSOCIATIONS IN CENTRAL AND SOUTHERN PATAGONIAN INLAND WATERS.

UN MODELO NULO PARA EXPLICAR LAS ASOCIACIONES DE ESPECIES DE CRUSTÁCEOS ZOOPLANCTÓNICOS EN AGUAS INTERIORES DE LA PATAGONIA CENTRAL Y SUR.

 

Patricio De los Ríos1,2

1 Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Ciencias Ambientales, Casilla 15-D, Temuco, Chile. E-mail(1): prios@uct.cl; E-mail(2): patorios@msn.com


ABSTRACT

The zooplankton assemblages in water bodies of central and southern Chilean Patagonia, is characterized by high endemism and a relative low species richness, the main regulator factor would be the conductivity and trophic status of their habitats. The aim of the present study was analyze published and unpublished information about crustacean zooplankton in central and southern Chilean Patagonian lakes and ponds (44 - 53g S). To these data was applied the species / genera ratio, and also, a null mo-del analysis for species co-occurrence, based in a presence-absence species matrix, for determine the existence of random factors as regulator factors of species associations. Finally, it was applied a Jaccard index for determine potential similarities in species associations for site. The results revealed low species number in large and deep lakes, whereas in small shallow permanent and ephemeral ponds had high species number, and low value in the species genera / ratio. The results of null model revealed the absence of random factors as regulators of species associations for two of three simulations, and the results of Jaccard index denoted the existence of three main groups based in the species associations of sites. These results agree with ecological information for southern Patagonia. Ecological and biogeographical topics are discussed.

Key words: zooplankton, Boeckella, Branchinecta, Daphnia, lakes, ponds, null model.

RESUMEN

Los ensambles zooplanctónicos en cuerpos de agua de la zona centro y sur de la Patagonia chilena se caracterizan por su alto endemismo y un relativo bajo número de especies lo cual se debería principalmente a la oligotrofía y niveles de conductividad de estos ambientes. El objetivo del presente trabajo consistió en analizar información publicada y sin publicar sobre crustáceos zooplanctónicos en lagos y lagunas de la zona central y sur de la Patagonia (44 - 53g S). A estos datos se les estimó la razón especies / género, y se aplicó un modelo nulo basado en co-ocurrencia de especies mediante una matriz de presencia y ausencia de especies, con la intención de determinar ausencia de factores reguladores de las asociaciones de especies. Dentro de este mismo contexto, se aplicó un índice de Jaccard para determinar potenciales similitudes entre las asociaciones de especies por sitio.

Los resultados revelaron que hubo un bajo número de especies en lagos grandes y profundos, mientras que en lagunas pequeñas someras, ya sea temporales o permanentes, hubo un alto número de especies, y un bajo valor de la razón especies género. Los resultados del modelo nulo revelaron la ausencia de factores aleatorios como reguladores de las asociaciones de especies en dos de tres simulaciones. Los resultados del índice de Jaccard indicaron la existencia de grupos marcados de sitios sobre la base de las especies reportadas en cada uno. Estos resultados concordarían con información ecológica para el sur de la Patagonia. Se discutieron tópicos de ecología y biogeografía.

Palabras clave: zooplancton, Boeckella, Branchinecta, Daphnia, lagos, lagunas, modelo nulo.


INTRODUCTION

The zooplankton assemblages in lakes and ponds in central and southern Patagonia (44 - 53g S), has different patterns, due the heterogeneity of water bodies, based in studies of water bodies of Torres del Paine National Park, we have first low species richness in oligotrophic large and deep lakes, and second high species richness in small lakes and shallow ponds (Soto 1990, De los Ríos 20031, Soto & De los Ríos 2006). The studies for water bodies of Torres del Paine National Park, denoted that the zooplankton species associations are regulated by conductivity and the trophic status (Soto & De los Ríos 2006). This pattern is similar with descriptions for lakes and ponds in Argentinean Patagonia (Modenutti et al. 1998), and with descriptions of New Zealand lakes and ponds (Jeppensen et al. 1997, 2000). These observations are markedly opposed to Europa and North América, that have high number of species, that is directly associated with surface (Dodson 1992), and with marked dominance of daphnids cladocerans (Gillooly & Dodson 2000).

On this view point the zooplankton assemblages are not random, this is that the regulator factors are deterministic. The absence of regulator factors, this is random distribution in species co-occurrence is the basis of null models, one of these models, used presence and absence of species for determine the absence of deterministic factors as regulator of species co-occurrence (Gotelli 2000, 2001; Abelha et al. 2006; Rodríguez-Fernández et al. 2006; Segurado & Figueredo 2007). These null models are more robust in comparison with deterministic models (Gotelli 2000, 2001). The aim of the present study is apply a null model analysis based in a presence-absence species matrix for determine the absence regulator factors for explain species associations in zooplankton of central and southern Patagonian lakes and ponds.

MATERIAL AND METHODS

Information for species associations in central and southern Patagonian lakes and ponds was obtained from literature (Villalobos 19992, De los Ríos 2005, Soto & De los Ríos 2006, De los Ríos & Soto 2007, De los Ríos et al., in press-13, Rogers et al. In press4), also, information obtained in field works in October 2001, October 2006 and April 2007 was included. For field work, the zooplankton was collected using horizontal hauls in shallow ponds, whereas in small lakes, and large and deep lakes, the zooplankton was collected by vertical hauls from a boat, for both procedures, were used an Apstein net of 20 cm diameter and 100 µm mesh size. Zooplankton specimens were fixed with absolute ethanol, and identified with specialized literature (Araya & Zúñiga 1985, Reid 1985, Bayly 1992a,b, Paggi 1999, De los Ríos & Zúñiga 2000, Brték & Mura 2000). To this information was applied for each site the species / generaratio (Gotelli 2000, 2001).

The comparison of the dataset gathered is useful to test the hypothesis that species reported are non randomly associated. For this, we use the "C score" index (Stone & Roberts 1990), which determines the co-occurrence based on presence (1)-absence (2) matrices for a zooplankton species in the sample. Following Gotelli (2000) and Tiho & Johens (2007) the presence/absence matrix was analysed as follows: (a) fixed-fixed: In this algorithm,, the row and the column sums of the original matrix are preserved. Thus each random community contains the same number of species as the original community (fixed column), and each species occurs with the same frequency as in the original community (fixed row). In this instance, it is not prone to type I errors (falsely rejecting the null hypothesis) and has a good power for detecting non-randomness (Gotelli 2000, Tiho & Johens 2006). (b) fixed-equiprobable: In this simulation, only the row sums are fixed, whereas the columns are treated as equiprobable. This null model treats all the samples (columns) as equally suitable for all species (Tiho & Johens 2006, Gotelli 2000). (c) fixed-proportional in this algorithm, the species occurrence totals are maintained as in the original community, and the probability that a species occurs in a sample (= column) is proportional to the column total for that sample (Gotelli 2000, Tiho & Johens 2006, Tondoh 2007). Data were analysed with Ecosim program version 7.0 (Gotelli & Entsminger 2001). Finally, it was applied a Jaccard index for determine the similarities between studied sites (Gotelli & Graves 1996, Frutos 1998), this analysis was applied using the software Biodiversity Pro.

RESULTS AND DISCUSSION

The results denoted low species richness in large and deep lakes, whereas in small lakes, shallow permanent and temporal ponds a high number of species were reported (Table 1). For large and deep lakes, and small lakes, the most representative species were Boeckella gracilipes (Daday, 1902), B. michaelseni (Mrázek, 1901), Daphnia pulex (Scourfield, 1877), and Ceriodaphnia dubia (Richard, 1894) (Table 2). Whereas for shallow temporal and permanent pond the most representative species were B. gracilipes, B.  michaelseni, B. poppei (Mrázek, 1901), Para-broteas sarsi (Mrázek, 1901) and D. dadayana (Paggi, 1999) (Table 2), an important situation was reported in few shallow temporal ponds, that have the presence of Branchinecta genera (Table 2). Finally, also, the presence of brine shrimps Artemia persimilis (Piccinelli & Prosdocimi, 1968), were    factors of species associations for fixed-fixed and reported in two saline lakes (Table 2). The species    fixed-proportional simulations, whereas for fixed-observed in the present study, included some wide    equiprobable simulations it denoted the absence of spread species such as B. gracilipes, D. pulex and C.  dubia, and endemic species such as B. poppei, P. sarsi and D. dadayana, a particular situation is the presence of the halophilic calanoid copepod B.poopoensis (Marsh, 1906) (Table 2). The value of species genera ratio was low (Table 1), this is due probably to low species number. The results of null model analysis revealed the presence of regulator factors of species associations for fixed-fixed and fixed-proportional simulations, whereas for fixed-equiprobable simulations it denoted the absence of regulator factors, this is random distribution as cause of species association reported (Table 3). The results of Jaccard index denoted the existence of three main groups, a first group that joined large lakes and small lakes with few species number, a second group main joined with shallow ephemeral and permanent ponds with high species number, and a third group that included only Amarga and De los Cisnes lagoons, that are the hyper saline habitats of studied zone (Fig. 1). This results of Jaccard index support the results of null models, first the results of fixed-fixed and fixed-proportional simulations, that denote pre-sence of regulator factors, agree with the results of Jaccard, where it is possible found different groups in according to species associations. Second, the results of fixed-equiprobable simulation that denote the absence of regulator factors for explain species associations, would be caused due the occurrence of determined species that were reported in many of the studied sites, in example B. michaelseni or B. poppei (Table 2; De los Ríos et al., In press-2, In press-3).




The results obtained in the present study that denoted the absence of species associations in both simulation of null models, would agree with descriptions for zooplankton assemblages in lakes and ponds of Torres del Paine National Park, that described the important role of conductivity and trophic status as main regulator of zooplankton assemblages (Soto & De los Ríos 2006). This description would be similar to Argentinean Patagonia (Campos et al. 1994a,b, Modenutti et al. 1998). The zooplankton assemblages in water bodies of Argentinean and Chilean Patagonia, is characterized by the high predominance of calanoids copepods (Soto & Zúñiga 1991, Modenutti et al. 1998, Soto & De los Ríos 2006, De los Ríos & Soto 2006). If we considerer the importance of calanoids copepods in the zooplankton assemblages, there are two main groups, first, small and gracile species such as B. gracilipes and B. michaelseni, that has been reported for large and deep lakes and small lakes and some times in shallow ponds (Bayly 1992a, Menu-Marque et al. 2000, Soto & De los Ríos 2006). The second group included large and stout species such as B. brasiliensis (Lubbock, 1855), B. poppei and P. sarsi that inhabits in small shallow permanent and temporal ponds (Bayly 1992a, Menú-Marque et al. 2000, Soto & De los Ríos 2006), this last pattern of zooplankton assemblage has been reported for sub-antarctic island (Hannson et al. 1996, Pugh et al. 2002, Dartnall 2005). If it is considered this habitat heterogeneity it is possible denote the presence of bio-indicator species such as fairy shrimps, that would be indicators of low conductivity and oligotrophic water bodies (De los Ríos & Rivera 2007), also, other important species is A. persimilis that inhabits at hipersaline water bodies (Campos et al. 1996).

The role of salinity as determining the zooplankton structure has been reported for lakes and ponds of northern Chilean and surrounding zones, that denoted the exístence of two maín species, first B. poopoensis that inhabits at salinity lower than 90 g/1, and second species is A. franciscana (Kellog, 1906) that inhabit at salinity upper than 90 g/1 (Hurlbert et al. 1984, 1986, Williams et al. 1995, De los Ríos & Crespo 2004, De los Ríos 2005, De los Ríos & Contreras 2005). Nevertheless, in Altiplanic water bodies both species are practically exclusive component in zooplankton assemblages, this is a different situation, because the low salinity observed in southern Patagonian plains, allow the exístence of a relative high species number at low conductivity waters (Soto & De los Ríos 2006). Also many of the studied sites are very near, and this condition would explain the existence of similar species in many cióse sites (Menu-Marque et al. 2000, Soto & De los Ríos 2006). This last condition would explain the result of fixed-equiprobable simulation that denoted the exístence of regulator factors for explain species association in studied sites (Table 3).




The obtained results need confirmation, with more ecological studies for understand the zooplankton community ecology of Patagonian water bodies.

ACKNOWLEDGEMENTS

The present study was financed by projects DID-UACH d2001-11, CONICYT-Chile (Doctoral Fellowship and Grant for support Doctoral Thesis), and the Research Direction of the Catholic University of Temuco (Fund for Development of Limnology).

 

NOTES

1 De los Ríos, P. 2003. Efectos de las disponibilidades de recursos energéticos, estructurales y de protección sobre la distribución y abundancia de conépodos y cladóceros zooplanctónicos lacustres chilenos: 1-107 (PhD. Thesis, Austral University of Chile, Valdivia).

2 Villalobos, L., 1999. Determinación de capacidad de carga y balance de fósforo y nitrógeno de los lagos Riesco, Los Palos y Laguna Escondida en la XI región. Informe Técnico, Fondo de Investigación Pesquera, Chile FOP-IT/97-39.

3 De los Ríos et al. In press-1. Branchinecta gaini (Daday, 1910) (Brachiopoda Anostraca) as a bioindicator of oligotrophic and low conductivity shallow ponds in southern Chilean Patagonia. Crustaceana.

4 Rogers et al. In press. The fairy shrimp (Crustacea, Branchiopoda, Anostraca) of Chile. Journal Crustacean Biology.

 

LITERATURE CITED

Abelha, M.C.F, E. Goulart, E.A.L. Kashiwaqui & M.R. Da Silva 2006. Astyanax paranae Eigenmann, 1914 (Characiformes: Characidae) in the Alagados Reservior, Paraná, Brazil: diet composition and variation. Neotropical Ichthyology, 4: 345-356.        [ Links ]

Araya, J.M. & L.R. Zúñiga 1985. Manual taxonómico del zooplancton lacustre de Chile. Boletín Limnológico, Universidad Austral de Chile 8: 1-169 p.        [ Links ]

Bayly, I.A.E. 1992a. Fusion of the genera Boeckella and Pseudoboeckella and a revision of their species from South America and Subantarctic islands. Revista Chilena de Historia Natural, 65: 17-63        [ Links ]

Bayly, I.A.E. 1992b. The non marine Centropagidae (Copepoda, Calanoida) of the world. Guides for the Identification of Microinvertebrates of Freshwaters of the Continental Waters of the World, 2: i-iv, 1-30. (SPB, Academic Publishers, Amsterdam)        [ Links ]

Brték, D. & G. Mura 2000. Revised key to families and genera of the anostraca with notes on their geographical distribution. Crustaceana 79: 1037-1088.        [ Links ]

Campos, H., D. Soto, O. Parra, W. Steffen & G. Agüero 1996. Limnological studies of Amarga lagoon, Chile: a saline lake in Patagonia, South America. International Journal of Salt Lake Research 4: 301-314.        [ Links ]

Campos, H., D. Soto, W. Stefen, G. Agüero, O. Parra & L. Zúñiga 1994a. Limnological studies of lake del Toro (Chile): morphometry, physics, chemistry and plankton. Archiv für Hydrobiologie 99 (Suppl): 199-215.        [ Links ]

Campos, H., D. Soto, W. Stefen, G. Agüero, O. Parra & L. Zúñiga 1994b. Limnological studies of lake del Sarmiento (Chile): a subsaline lake from Chilean Patagonia. Archiv für Hydrobiologie 99 (Suppl): 217-234.        [ Links ]

Dartnall, J.G. 2005. Freshwater invertebrates of subantarctic South Georgia. Journal of Natural History, London, 39: 3321-3342.        [ Links ]

De los Ríos, R & D. Soto 2006. Structure of the zooplanktonic crustaceous Chilean lacustre assamblages: role of the trophic status and protection resources. Crustaceana 79: 23-32.        [ Links ]

De los Ríos, R & R Contreras 2005. Salinity level for occurrence of calanoids copepods in shallow ponds of South American Altiplano and Chilean Patagonia. Polish Journal of Ecology, 53: 445-450.        [ Links ]

De los Ríos, P 2005. Richness and distribution of crustacean zooplankton species in Chilean Andes mountains and southern Patagonia shallow ponds. Polish Journal of Environmental Studies, 14: 817-822.        [ Links ]

De los Ríos, R & J. Crespo 2004. Salinity effects on the abundance of Boeckella poopoensis (Copepoda, Calanoida) in saline ponds of the Atacama desert, northern Chile. Crustaceana, 77: 417-423.        [ Links ]

Dodson, S.I. 1992. Predicting crustacean species richness of crustacean zooplankton species richness. Limnology & Oceanography 37: 848-856.        [ Links ]

Frutos, S.M. 1998. Densidad y diversidad del zoo-plancton en los ríos Salado y Negro, planicie del río Paraná- Argentina. Revista Brasileira de Biología 58: 431-444.        [ Links ]

Gillooly, J.F. & Dodson S.I. 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world freshwater cladocerans. Limnology & Oceanography 45: 22-30.        [ Links ]

Gotelli, N.J. & G.R. Graves 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, DC.        [ Links ]

Gotelli, N.J. 2000. Null models of species co-occurrence patterns. Ecology, 81: 2606-2621.        [ Links ]

Gotelli, N. J., 2001. Research frontiers in null model analysis. Global Ecology Biogeography, 10: 337-343.        [ Links ]

Gotelli, N.J. & G.L. Entsminger 2007. EcoSim: null models software for ecology. version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. http://garyentsminger.com/ecosim.htm.        [ Links ]

Hannsson, L.A., H.J. Dartnall, J.C. Ellis-Evans, H. MacAlister & L. J. Tranvik 1996. Variations in physical, chemical and biological components in the subantarctic lakes of South Georgia. Ecography 19: 393-404        [ Links ]

Hurlbert, S.H., López, M., & J. Keith 1984. Wilson's phalarope in the Central Andes and its interaction with the Chilean Flamingo. Revista Chilena de Historia Natural 57: 47-57.        [ Links ]

Hurlbert, S.H., W. Loayza & T. Moreno 1986. Fish flamingo plankton interactions in the Peruvian Andes. Limnology & Oceanography 31: 457-468.        [ Links ]

Jeppensen, E., T.L. Lauridsen, S.F Mitchell, K. Christoffersen & C.W. Burns 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. Journal of Plankton Research 22: 951-968.        [ Links ]

Jeppensen, E., T.L. Lauridsen, S.F. Mitchell, & C.W. Burns 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes?. New Zealand Journal of Marine and Freshwater Research 31: 163-173.        [ Links ]

Menu-Marque, S., J. J. Morrone & S. Locascio de Mitrovich 2000. Distributional patterns of South American species of Boeckella (Copepoda, Centropagidae): a track analysis. Journal of Crustacean Biology 20: 262-272.        [ Links ]

Paggi, J.C. 1999. Status and phylogenetic relationships of Daphnia sarsi Daday 1902 (Crustacea, Anomopoda). Hidrobiología 403: 27-37.        [ Links ]

Pugh, P.J.A., H. Dartnall & S.J. Mcinnes 2002. The non-marine Crustacea of Antarctica and the islands of the Southern Ocean: biodiversity and biogeography. Journal of Natural History, London 36: 1047-1103.        [ Links ]

Reid, J. 1985. Chave de identificao e lista de referencias bibliográficas para as especies continentais sudamericanas de vida libre da orden Cyclopoida (Crustácea, Copepoda). Boletín Zoológico Universidade do Sao Paulo 9: 17-143.        [ Links ]

Rodríguez-Fernandez, J.I., C. J. Barros de Carvalho & M.O. Moura 2006. Estrutura de asembleias de Muscidae (Díptera) no Paraná: urna análise por modelos nulos. Revista Brasileira de Entomología 50: 93-100.        [ Links ]

Segurado, P & D. Fiqueiredo 2007. Coexistence of two freshwater turtle species along a Mediterranean stream: the role of spatial and temporal heterogeneity. Acta Oecologica 32: 134-144.        [ Links ]

Soto, D. & P De los Ríos 2006. Trophic status and conductitivity as regulators of daphnids dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park. Biologia, Bratislava 61: 541-546.        [ Links ]

Soto, D. & L. Zúñiga 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Revista Chilena de Historia Natural 64: 569-546.        [ Links ]

Soto, D. 1990. Biomasa zooplanctónica de lagunas Patagónicas y su relación con el flamenco Chileno (Phoenicopterus chilensis). Actas Primer Taller Internacional de Especialistas en Flamencos Sudamericanos, San Pedro de Atacama, Chile. 84-102.        [ Links ]

Tiho, S. & J. Johens 2007. Co-occurrence of ear-thworms in urban surroundings: a null models of community structure. European Journal of Soil Biology 43: 84-90.        [ Links ]

Tondoh, J.E. 2006. Seasonal changes in earthworm diversity and community structure in central Cote d'Ivoire. European Journal of Soil Biology, 42: 334-340.        [ Links ]

Williams, W.D., T.R. Carrick, I.A.E. Bayly, J. Green, & D.B. Herbst 1995. Invertebrates of salt lakes of the Bolivian Altiplano. International Journal of Salt Lake Research 4: 65-77.        [ Links ]

Wölfl, S. 1996. Unterzuchungen zur Zooplanktons-truktur einschliesslich der mikrobiellen Gruppen unter Berücksichtigung der mixotrophen Ciliaten in zwei Südchilenischen Anden-fu_seen: 1-242. (PhD. Thesis University of Konstanz, Konstanz).        [ Links ]

 

2 Estudio financiado por proyectos DID-UACH d2001-11, CONICYT-Chile (beca doctoral y beca de apoyo para la realización de la tesis doctoral), y Dirección General de Investigación de la Universidad Católica de Temuco.

Received: May, 06, 2008

Accepted: Aug., 18, 2008