Scielo RSS <![CDATA[Biological Research]]> vol. 48 num. lang. pt <![CDATA[SciELO Logo]]> <![CDATA[<b>Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells</b>]]> BACKGROUND: Curcuma longa Linnaeus and Zingiber officinale Roscoe are two main representatives ofZingiberaceae family studied for a wide range of therapeutic properties, including: antioxidant, anti-inflammatory, anti-angiogenic, antibacterial, analgesic, immunomodulatory, proapoptotic, anti-human immunodeficiency virus properties and anticancer effects. This study was aimed to analyse the ethanolic extracts of Curcuma rhizome (Curcuma longa Linnaeus) and Zingiber rhizome (Zingiber officinale Roscoe) in terms of polyphenols, antioxidant activity and anti-melanoma potential employing the B164A5 murine melanoma cell line. RESULTS: In order to evaluate the total content of polyphenols we used Folin-Ciocâlteu method. The antioxidant activity of the two ethanolic extracts was determined by DPPH assay, and for the control of antiproliferative effect it was used MTT proliferation assay, DAPI staining and Annexin-FITC-7AAD double staining test. Results showed increased polyphenols amount and antioxidant activity forCurcuma rhizome ethanolic extract. Moreover, 100 μg/ml of ethanolic plant extract from both vegetal products presented in a different manner an antiproliferative, respectively a proapoptotic effect on the selected cell line. CONCLUSIONS: The study concludes that Curcuma rhizome may be a promising natural source for active compounds against malignant melanoma. <![CDATA[<b>Sugars, organic acids, and phenolic compounds of ancient grape cultivars (<i>Vitis vinifera</i> L.) from Igdir province of Eastern Turkey</b>]]> BACKGROUND: The Eurasian grapevine (Vitis vinifera L.) is the most widely cultivated and economically important horticultural crop in the world. As a one of the origin area, Anatolia played an important role in the diversification and spread of the cultivated form V. vinifera ssp. vinifera cultivars and also the wild form V. vinifera ssp. sylvestris ecotypes. Although several biodiversity studies have been conducted with local cultivars in different regions of Anatolia, no information has been reported so far on the biochemical (organic acids, sugars, phenolic acids, vitamin C) and antioxidant diversity of local historical table V. vinifera cultivars grown in Igdir province. In this work, we studied these traits in nine local table grape cultivars viz. 'Beyaz Kismis' (synonym name of Sultanina or Thompson seedless), 'Askeri', 'El Hakki', 'Kirmizi Kismis', 'Inek Emcegi', 'Hacabas', 'Kerim Gandi', 'Yazen Dayi', and 'Miskali' spread in the Igdir province of Eastern part of Turkey. RESULTS: Variability of all studied parameters is strongly influenced by cultivars (P < 0.01). Among the cultivars investigated, 'Miskali' showed the highest citric acid content (0.959 g/l) while 'Kirmizi Kismis' produced predominant contents in tartaric acid (12.71 g/l). The highest glucose (16.47 g/100 g) and fructose (15.55 g/100 g) contents were provided with 'Beyaz Kismis'. 'Kirmizi Kismis' cultivar had also the highest quercetin (0.55 mg/l), o-coumaric acid (1.90 mg/l), and caffeic acid (2.73 mg/l) content. The highest ferulic acid (0.94 mg/l), and syringic acid (2.00 mg/l) contents were observed with 'Beyaz Kismis' cultivar. The highest antioxidant capacity was obtained as 9.09 μmol TE g-1 from 'Inek Emcegi' in TEAC (Trolox equivalent Antioxidant Capacity) assay. 'Hacabas' cultivar had the highest vitamin C content of 35.74 mg/100 g. CONCLUSIONS: Present results illustrated that the historical table grape cultivars grown in Igdir province of Eastern part of Turkey contained diverse and valuable sugars, organic acids, phenolic acids, Vitamin C values and demonstrated important antioxidant capacity for human health benefits. Further preservation and use of this gene pool will be helpful to avoid genetic erosion and to promote continued agriculture in the region. <![CDATA[<b>A low-protein diet during pregnancy prevents modifications in intercellular communication proteins in rat islets</b>]]> <![CDATA[<b>Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals</b>]]> BACKGROUND: Honey is a natural product obtained from the nectar that is collected from flowers by bees. It has several properties, including those of being food and supplementary diet, and it can be used in cosmetic products. Honey imparts pharmaceutical properties since it has antibacterial and antioxidant activities. The antibacterial and antioxidant activities of Thai honey were investigated in this study. RESULTS: The honey from longan flower (source No. 1) gave the highest activity on MRSA when compared to the other types of honey, with a minimum inhibitory concentration of 12.5% (v/v) and minimum bactericidal concentration of 25% (v/v). Moreover, it was found that MRSA isolate 49 and S. aureus were completely inhibited by the 50% (v/v) longan honey (source No. 1) at 8 and 20 hours of treatment, respectively. Furthermore, it was observed that the honey from coffee pollen (source No. 4) showed the highest phenolic and flavonoid compounds by 734.76 mg gallic/kg of honey and 178.31 mg quercetin/kg of honey, respectively. The antioxidant activity of the honey obtained from coffee pollen was also found to be the highest, when investigated using FRAP and DPPH assay, with 1781.77 mg FeSO4•7H2O/kg of honey and 86.20 mg gallic/kg of honey, respectively. Additionally, inhibition of tyrosinase enzyme was found that honey from coffee flower showed highest inhibition by 63.46%. CONCLUSIONS: Honey demonstrates tremendous potential as a useful source that provides anti-free radicals, anti-tyrosinase and anti-bacterial activity against pathogenic bacteria causing skin diseases. <![CDATA[<b>The application of multiplex fluorimetric sensor for the analysis of flavonoids content in the medicinal herbs family<i> Asteraceae, Lamiaceae, Rosaceae</i></b>]]> BACKGROUND: The aim of our research work was to quantify total flavonoid contents in the leaves of 13 plant species family Asteraceae, 8 representatives of family Lamiaceae and 9 plant species belonging to familyRosaceae, using the multiplex fluorimetric sensor. Fluorescence was measured using optical fluorescence apparatus Multiplex(R) 3 (Force-A, France) for non-destructive flavonoids estimation. The content of total flavonoids was estimated by FLAV index (expressed in relative units), that is deduced from flavonoids UV absorbing properties. RESULTS: Among observed plant species, the highest amount of total flavonoids has been found in leaves ofHelianthus multiflorus (1.65 RU) and Echinops ritro (1.27 RU), Rudbeckia fulgida (1.13 RU) belonging to the family Asteraceae. Lowest flavonoid content has been observed in the leaves of marigold (Calendula officinalis) (0.14 RU) also belonging to family Asteraceae. The highest content of flavonoids among experimental plants of family Rosaceae has been estimated in the leaves of Rosa canina (1.18 RU) and among plant species of family Lamiaceae in the leaves of Coleus blumei (0.90 RU). CONCLUSIONS: This research work was done as pre-screening of flavonoids content in the leaves of plant species belonging to family Asteraceae, Lamiaceae and Rosaceae. Results indicated that statistically significant differences (P > 0.05) in flavonoids content were observed not only between families, but also among individual plant species within one family. <![CDATA[<b>The TLR7 agonist Imiquimod promote the immunogenicity of msenchymal stem cells</b>]]> BACKGROUND: Mesenchymal stem cells (MSCs) are considered the best candidate in stem cells therapy due to their multipotent differentiation ability, low expression of co-stimulatory molecules (CD80, CD86, CD34 and HLA-II) and immunosuppression effects on in vivo immune responses. MSCs were now widely used in clinical trials but received no encourage results. The major problem was the fate of engrafted MSCs in vivo could not be defined. Some studies indicated that MSCs could induce immune response and result in the damage and rejection of MSCs. As toll like receptors (TLRs) are important in inducing of immune responses, in this study we study the role of TLR7 in mediating the immune status of MSCs isolated from umbilical cord. RESULTS: Our results indicated that TLR7 agonist Imiquimod could increase the proliferation of PBMC isolated from healthy human volunteers and release of lactate dehydrogenase (LDH) in supernatant from PBMC-UCMSCs co-culture system. Flow cytometry and quantitative PCR also confirmed the regulated expression of surface co-stimulatory molecules and pro-inflammatory genes (IL-6, IL-8, IL-12, TGF-β and TNF-α). And the down-regulation expression of stem cell markers also confirmed the loss of stemness of UCMSCs. We also found that the osteo-differentiation ability of UCMSCs was enhanced in the presence of Imiquimod. CONCLUSION: To our knowledge, this is the first report that activation of TLR7 pathway increases the immunogenicity of UCMSCs. Extensive researches have now been conducted to study whether the change of immune status will be help in tumor rejection based on the tumor-tropism of MSCs. <![CDATA[<b>Chemical composition and antibacterial activities of seven <i>Eucalyptus</i> species essential oils leaves</b>]]> BACKGROUND: In this paper, we have studied the essential oils chemical composition of the leaves of seven Eucalyptus species developed in Tunisia. Eucalyptus leaves were picked from trees growing in different arboretums in Tunisia. Choucha and Mrifeg arboretums located in Sedjnene, region of Bizerte (Choucha: E. maideni, E. astrengens et E. cinerea; Mrifeg : E. leucoxylon), Korbous arboretums located in the region of Nabeul, North East Tunisia with sub-humid bioclimate, (E. lehmani), Souiniet-Ain Drahem arboretum located in region of Jendouba (E. sideroxylon, E. bicostata). Essential oils were individually tested against a large panel of microorganisms includingStaphylococcus aureus (ATCC 6539), Escherichia coli (ATCC 25922), Enterococcus faecalis (ATCC29212), Listeria ivanovii (RBL 30), Bacillus cereus (ATCC11778). RESULTS: The yield of essential oils ranged from 1.2% to 3% (w/w) for the different Eucalyptus species. All essential oils contain α-pinene, 1,8-cineol and pinocarveol-trans for all Eucalyptus species studied. The 1,8-cineol was the major compound in all species (49.07 to 83.59%). Diameter of inhibition zone of essential oils of Eucalyptus species varied from 10 to 29 mm. The largest zone of inhibition was obtained for Bacillus cereus (E. astrengens) and the lowest for Staphylococcus aureus (E. cinerea). The essential oils from E. maideni, E. astrengens, E. cinerea (arboretum of Bizerte), E. bicostata(arboretum of Aindraham) showed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus. CONCLUSION: The major constituents of Eucalyptus leaves essential oils are 1,8-cineol (49.07 to 83.59%) and α-pinene (1.27 to 26.35%). The essential oils from E. maideni, E. astrengens, E. cinerea, E. bicostatashowed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus, they may have potential applications in food and pharmaceutical products. <![CDATA[<b>Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of <i>Labisia pumila</i> Benth</b>]]> BACKGROUND: The present study was conducted in order to evaluate the fatty acid profile, anti-oxidant and anti-bacterial activities from the microwave aqueous extract of the leaves of three different varieties of Labisia pumila Benth. RESULTS: The chemical analysis of the extract showed that fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic and α-linolenic) acid as the main components in three varieties of L. pumila leaves. Furthermore, the obtained results of the anti-oxidant revealed that L. pumila var. alata contained higher anti-oxidative activities compared to var. pumila and var. lanceolata. However, these values were lower than the tested anti-oxidant standards. On the other hand, the aqueous leaf extracts in all three varieties of L. pumila were also found to inhibit a variable degree of antibacterial activities against eight bacteria (four Gram-positive and four Gram-negative bacteria). CONCLUSIONS: In this study, it was observed the leaves of three varieties of L. pumila exhibited variable patterns of fatty acids and the microwave aqueous extraction possess anti-oxidant and anti-bacterial activities. <![CDATA[<b>Effects of Er-Miao-San extracts on TNF-alpha-indueed <i>MMP-1 </i>expression in human dermal fibroblasts</b>]]> BACKGROUND: Various health benefits have been attributed to Er-Miao-San (EMS), a traditional Chinese herbal formulation that contains equal amounts of cortex phellodendri (Phellodendron amurense Ruprecht) and rhizoma atractylodis (Atractylodes lancea D.C). However, its effect on the anti-inflammatory activity in human dermal fibroblasts (HDFs) and the mechanism underlying this effect are unknown. RESULTS: This study investigated the effects of EMS on TNF-α-induced MMP-1 expression in HDFs. Our data show that EMS inhibited TNF-α-induced MMP-1 expression in a concentration-dependent manner. Interestingly, EMS maintained IkB content without inhibiting the phosphorylation of MAPKs, which are well-established upstream kinases of NF-kB. Moreover, EMS reduced the level of nuclear p65 protein in HDFs. Luciferase assay revealed that EMS inhibits the transcriptional activity of NF-kBbystabilizing IkB. Our results show that EMS exerts its anti-inflammatory effect by inhibiting NF-kB-regulated genes such as ΙL-1β and IL-8. Moreover, EMS effectively inhibited TNF-α-induced expression of MMP-1 via the NF-kBpathway. CONCLUSIONS: Taken together, our data suggest that EMS could potentially be used as an anti-inflammatory and anti-aging treatment. <![CDATA[<b>A snapshot of cancer in Chile</b>: <b>analytical frameworks for developing a cancer policy</b>]]> INTRODUCTION: The South American country Chile now boasts a life expectancy of over 80 years. As a consequence, Chile now faces the increasing social and economic burden of cancer and must implement political policy to deliver equitable cancer care. Hindering the development of a national cancer policy is the lack of comprehensive analysis of cancer infrastructure and economic impact. OBJECTIVES: Evaluate existing cancer policy, the extent of national investigation and the socio-economic impact of cancer to deliver guidelines for the framing of an equitable national cancer policy. METHODS: Burden, research and care-policy systems were assessed by triangulating objective system metrics -epidemiological, economic, etc. - with political and policy analysis. Analysis of the literature and governmental databases was performed. The oncology community was interviewed and surveyed. RESULTS: Chile utilizes 1% of its gross domestic product on cancer care and treatment. We estimate that the economic impact as measured in Disability Adjusted Life Years to be US$ 3.5 billion. Persistent inequalities still occur in cancer distribution and treatment. A high quality cancer research community is expanding, however, insufficient funding is directed towards disproportionally prevalent stomach, lung and gallbladder cancers. CONCLUSIONS: Chile has a rapidly ageing population wherein 40% smoke, 67% are overweight and 18% abuse alcohol, and thus the corresponding burden of cancer will have a negative impact on an affordable health care system. We conclude that the Chilean government must develop a national cancer strategy, which the authors outline herein and believe is essential to permit equitable cancer care for the country. <![CDATA[<b>Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry</b>]]> BACKGROUND: Cadmium (Cd) is well known as one of the most toxic metals affecting the environment and can severely restrict plant growth and development. In this study, Cd toxicities were studied in strawberry cv. Camarosa using pot experiment. Chlorophyll and malondialdehyde (MDA) contents, catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) activities and mineral nutrient concentrations were investigated in both roots and leaves of strawberry plant after exposure Cd. RESULTS: Cd content in both roots and leaves was increased with the application of increasing concentrations of Cd. We found higher Cd concentration in roots rather than in leaves. Chlorophyll a and b was decreased in leaves but MDA significantly increased under increased Cd concentration treatments in both roots and leaves. SOD and CAT activities was also increased with the increase Cd concentrations. K, Mn and Mg concentrations were found higher in leaves than roots under Cd stress. In general, increased Cd treatments increased K, Mg, Fe, Ca, Cu and Zn concentration in both roots and leaves. Excessive Cd treatments reduced chlorophyll contents, increased antioxidant enzyme activities and changes in plant nutrition concentrations in both roots and leaves. CONCLUSION: The results presented in this work suggested that Cd treatments have negative effect on chlorophyll content and nearly decreased 30% of plant growth in strawberry. Strawberry roots accumulated higher Cd than leaves. We found that MDA and antioxidant enzyme (CAT, SOD and APX) contents may have considered a good indicator in determining Cd tolerance in strawberry plant. <![CDATA[<b>Anti-inflammatory components of the Vietnamese starfish <i>Protoreaster nodosus</i></b>]]> BACKGROUND: In the present study, we examined the inhibitory effects of a methanolic extract, dichloromethane fraction, water layer, and polyhydroxylated sterols (1-4) isolated from the Vietnamese starfish Protoreaster nodosus on pro-inflammatory cytokine (IL-12 p40, IL-6, and TNF-α) production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) using enzyme-linked immunosorbent assays (ELISA). RESULTS: The methanolic extract and dichloromethane fraction exerted potent inhibitory effects on the production of all three pro-inflammatory cytokines, with IC50 values ranging from 0.60 ±0.01 to 26.19 ±0.64 μg/mL. Four highly pure steroid derivatives (1-4) were isolated from the dichloromethane fraction and water layer of P. nodosus. Potent inhibitory activities were also observed for (25S)5α-cholestane-3β,6α,7α,8β,15α,16β,26-octol (3) on the production of IL-12 p40 and IL-6 (IC50s = 3.11 ± 0.08 and 1.35 ± 0.03 μM), and for (25S)5α-cholestane-3β, 6α,8β, 15α,16β, 26-hexol (1) and (25S)5α-cholestane-3β,6α,7α,8β,15α,16β,26-heptol (2) on the production of IL-12 p40 (IC50s = 0.01 ±0.00 and and 1.02 ± 0.01 μM). Moreover, nodososide (4) exhibited moderate inhibitory effects on IL-12 p40 and IL-6 production. CONCLUSION: This is the first report of the anti-inflammatory activity from the starfish P. nodosus. The main finding of this study is the identification oxygenated steroid derivatives from P. nodosus with potent anti-inflammatory activities that may be developed as therapeutic agents for inflammatory diseases. <![CDATA[<b>Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea</b>]]> BACKGROUND: In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. RESULTS: Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. CONCLUSIONS: Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration. <![CDATA[<b>Chloroplast localization of <i>Cry1Ac </i>and <i>Cry2A </i>protein- an alternative way of insect control in cotton</b>]]> BACKGROUND: Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants. RESULTS: Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein. CONCLUSION: Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view. <![CDATA[<b>In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice</b>: <b><i>Monodora myristica</i></b>]]> BACKGROUND: Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC. RESULTS: This study demonstrated that M. myristica has scavenging properties against DPPH',OH',NO', and ABTS'radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT) and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH); showed a significantly higher content in polyphenolic compounds (21.44 ±0.24 mg caffeic acid/g dried extract) and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight) as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic), alcohols (tyrosol and OH-tyrosol), theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD), catalase and peroxidase activities. CONCLUSION: Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes. <![CDATA[<b><i>In vitro </i></b><b>antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of <i>Newbouldia laevis </i>ethanolic leaf extract</b>]]> <![CDATA[<b>Mitochondrial ATPase activity and membrane fluidity changes in rat liver in response to intoxication with Buckthorn <i>(Karwinskia humboldtiana)</i></b>]]> BACKGROUND: Karwinskia humboldtiana (Kh) is a poisonous plant of the rhamnacea family. To elucidate some of the subcellular effects of Kh toxicity, membrane fluidity and ATPase activities as hydrolytic and as proton-pumping activity were assessed in rat liver submitochondrial particles. Rats were randomly assigned into control non-treated group and groups that received 1,1.5 and 2 g/Kg body weight of dry powder of Kh fruit, respectively. Rats were euthanized at day 1 and 7 after treatment RESULTS: Rats under Kh treatment at all dose levels tested, does not developed any neurologic symptoms. However, we detected alterations in membrane fluidity and ATPase activity. Lower dose of Kh on day 1 after treatment induced higher mitochondrial membrane fluidity than control group. This change was strongly correlated with increased ATPase activity and pH gradient driven by ATP hydrolysis. On the other hand, membrane fluidity was hardly affected on day 7 after treatment with Kh. Surprisingly, the pH gradient driven by ATPase activity was significantly higher than controls despite an diminution of the hydrolytic activity of ATPase CONCLUSIONS: The changes in ATPase activity and pH gradient driven by ATPase activity suggest an adaptive condition whereby the fluidity of the membrane is altered <![CDATA[<b>Lentivirus mediated silencing of Ubiquitin Specific Peptidase 39 inhibits cell proliferation of human hepatocellular carcinoma cells in vitro</b>]]> BACKGROUND: Ubiquitin Specific Peptidase 39 (USP39) is a 65 kDa SR-related protein involved in RNA splicing. Previous studies showed that USP39 is related with tumorigenesis of human breast cancer cells. RESULTS: In the present study, we investigated the functions of USP39 in human hepatocellular carcinoma (HCC) cell line SMMC-7721. We knocked down the expression of USP39 through lentivirus mediated RNA interference. The results of qRT-PCR and western blotting assay showed that both the mRNA and protein levels were suppressed efficiently after USP39 specific shRNA was delivered into SMMC-7721 cells. Cell growth was significantly inhibited as determined by MTT assay. Crystal violet staining indicated that colony numbers and sizes were both reduced after knock-down of USP39. Furthermore, suppression of USP39 arrested cell cycle progression at G2/M phase in SMMC-7721cells. In addition, Annexin V showed that downregulation of USP39 significantly increased the population of apoptotic cells. CONCLUSIONS: All our results suggest that USP39 is important for HCC cell proliferation and is a potential target for molecular therapy of HCC. <![CDATA[<b>Cytotoxicity and hepatoprotective attributes of methanolic extract of <i>Rumex vesicarius </i>L.</b>]]> BACKGROUND: To evaluate the hepatoprotective potential and invitro cytotoxicity studies of whole plant methanol extract of Rumex vesicarius L. Methanol extract at a dose of 100 mg/kg bw and 200 mg/kg bw were assessed for its hepatoprotective potential against CCl4-induced hepatotoxicity by monitoring activity levels of SGOT (Serum glutamic oxaloacetic transaminase), SGPT (Serum glutamic pyruvic transaminase), ALP (Alkaline phosphatase), TP (Total protein), TB (Total bilirubin) and SOD (Superoxide dismutase), CAT (Catalase), MDA (Malondialdehyde). The cytotoxicity of the same extract on HepG2 cell lines were also assessed using MTT assay method at the concentration of 62.5, 125, 250, 500 μg/ml. RESULTS: Pretreatment of animals with whole plant methanol extracts of Rumex vesicarius L. significantly reduced the liver damage and the symptoms of liver injury by restoration of architecture of liver. The biochemical parameters in serum also improved in treated groups compared to the control and standard (silymarin) groups. Histopathological investigation further corroborated these biochemical observations. The cytotoxicity results indicated that the plant extract which were inhibitory to the proliferation of HepG2 cell line with IC50 value of 563.33 ± 0.8 Mg/ml were not cytotoxic and appears to be safe. CONCLUSIONS: Rumex vesicarius L. whole plant methanol extract exhibit hepatoprotective activity. However the cytotoxicity in HepG2 is inexplicable and warrants further study. <![CDATA[<b>Antioxidant and anticholinesterase investigations of <i>Rumex hastatus </i>D. Don</b>: <b>potential effectiveness in oxidative stress and neurological disorders</b>]]> BACKGROUND: Rumex species are traditionally used for the treatment of neurological disorders including headache, migraine, depression, paralysis etc. Several species have been scientifically validated for antioxidant and anticholinestrase potentials. This study aims to investigate Rumex hastatus D. Don crude methanolic extract, subsequent fractions, saponins and flavonoids for acetylcholinestrase, butyrylcholinestrase inhibition and diverse antioxidant activities to validate its folkloric uses in neurological disorders. Rumexhastatus crude methanolic extract (Rh. Cr), subsequent fractions; n-hexane (Rh. Hex), chloroform (Rh. Chf), ethyl acetate (Rh. EtAc), aqueous fraction (Rh. Aq), crude saponins (Rh. Sp) and flavonoids (Rh. Fl) were investigated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at various concentrations (125, 250, 500,1000 μg/mL) using Ellman's spectrophotometric analysis. Antioxidant potentials of Rh. Sp and Rh. Fl were evaluated using DPPH, H2O2 and ABTS free radical scavenging assays at 62.5, 125, 250, 500, 1000 μg/mL. RESULTS: All the test samples showed concentration dependent cholinesterase inhibition and radicals scavenging activity. The AChE inhibition potential of Rh. Sp and Rh. Fl were most prominent i.e., 81.67 ± 0.88 and 91.62 ± 1.67 at highest concentration with IC50 135 and 20 μg/mL respectively. All the subsequent fractions exhibited moderate to high AChE inhibition i.e., Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq showed IC50 218, 1420, 75, 115 and 1210 μg/mL respectively. Similarly, against BChE various plant extracts i.e., Rh. Sp, Rh. Fl, Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq resulted IC50 165,175, 265, 890, 92, 115 and 220 μg/mL respectively. In DPPH free radical scavenging assay, Rh. Sp and Rh. Fl showed comparable results with the positive control i.e., 63.34 ± 0.98 and 76.93 ± 1.13% scavenging at 1 mg/mL concentration (IC50 312 and 104 μg/mL) respectively. The percent ABTS radical scavenging potential exhibited by Rh. Sp and Rh. Fl (1000 μg/mL) were 82.58 ± 0.52 and 88.25 ± 0.67 with IC50 18 and 9 μg/mL respectively. Similarly in H2O2 scavenging assay, the Rh. Sp and Rh. Fl exhibited IC50 175 and 275 μg/mL respectively. CONCLUSION: The strong anticholinesterase and antioxidant activities of Rh. Sp, Rh. Fl and various fractions of R. hastatus support the purported ethnomedicinal uses and recommend R. hastatus as a possible remedy for the treatment of AD and neurodegenerative disorders. <![CDATA[<b>Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of <i>atriplex laciniata </i>L.</b>: <b>potential effectiveness in Alzheimer's and other neurological disorders</b>]]> BACKGROUND: Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer's and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman's assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively. RESULTS: In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ±0.53, IC50 75), Al.SPF (85.35 ±0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 2 70 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 2 80 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 2 70 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 2 63 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 1 00 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 2 20 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 1 20 μg/mL. CONCLUSIONS: These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer's and other neurological disorders. <![CDATA[<b>Multiple antibiotic susceptibility of polyphosphate kinase mutants <i>(ppk1 </i>and <i>ppk2) </i>from <i>Pseudomonas aeruginosa </i>PAO1 as revealed by global phenotypic analysis</b>]]> BACKGROUND: Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1) is deficient in motility, quorum sensing, biofilm formation and virulence FINDINGS: By using Phenotypic Microarrays (PM) we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2). We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin CONCLUSIONS: Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties. <![CDATA[<b>Sox2 function as a negative regulator to control HAMP expression</b>]]> BACKGROUND: Hepcidin, encoding by HAMP gene, is the pivotal regulator of iron metabolism, controlling the systemic absorption and transportation of irons from intracellular stores. Abnormal levels of HAMP expression alter plasma iron parameters and lead to iron metabolism disorders. Therefore,itis animportant goal to understand the mechanisms controlling HAMP gene expression. RESULTS: Overexpression of Sox2 decrease basal expression of HAMP or induced by IL-6 or BMP-2, whereas, knockdown of Sox2 can increase HAMP expression, furthermore, two potential Sox2-binding sites were identified within the human HAMP promoter. Indeed, luciferase experiments demonstrated that deletion of any Sox2-binding site impaired the negative regulation of Sox2 on HAMP promoter transcriptional activity in basal conditions. ChIP experiments showed that Sox2 could directly bind to these sites. Finally, we verified the role of Sox2 to negatively regulate HAMP expression in human primary hepatocytes. CONCLUSION: We found that Sox2 as a novel factor to bind with HAMP promoter to negatively regulate HAMP expression, which may be further implicated as a therapeutic option for the amelioration of HAMP-overexpression-related diseases, including iron deficiency anemia. <![CDATA[<b>Feasibility of biohydrogen production from industrial wastes using defined microbial co-culture</b>]]> BACKGROUND: The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth) was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth). Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium). Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation. RESULTS: The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 mL/h-1.L-1, and those the two-step and the one-step processes of the small-scale fermentative hydrogen production system were 41.2 mLVh-1.L-1 and 35.1 mL/h-1.L-1, respectively. CONCLUSION: Therefore, the results indicate that the hydrogen production efficiency of the two-step process is higher than that of the one-step process. <![CDATA[<b>Integrin-β</b><b>1, not integrin-</b><b>β5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain</b>]]> BACKGROUND: Mechanical strain plays a great role in growth and differentiation of osteoblast. A previous study indicated that integrin-β (β1, β5) mediated osteoblast proliferation promoted by mechanical tensile strain. However, the involvement of integrin-β in osteoblastic differentiation and extracellular matrix (ECM) formation induced by mechanical tensile strain, remains unclear. RESULTS: After transfection with integrin-β1 siRNA or integrin-β5 siRNA, mouse MC3T3-E1 preosteoblasts were cultured in cell culture dishes and stimulated with mechanical tensile strain of 2500 microstrain (µε) at 0.5 Hz applied once a day for 1 h over 3 or 5 consecutive days. The cyclic tensile strain promoted osteoblastic differentiation of MC3T3-E1 cells. Transfection with integrin-β1 siRNA attenuated the osteoblastic diffenentiation induced by the tensile strain. By contrast, transfection with integrin-β5 siRNA had little effect on the osteoblastic differentiation induced by thestrain. At thesametime, theresultofECM formation promoted by the strain, was similar to the osteoblastic differentiation. CONCLUSION: Integrin-β1 mediates osteoblast differentiation and osteoblastic ECM formation promoted by cyclic tensile strain, and integrin-β5 is not involved in the osteoblasts response to the tensile strain. <![CDATA[<b>A possible role of <i>Drosophila </i>CTCF in mitotic bookmarking and maintaining chromatin domains during the cell cycle</b>]]> BACKGROUND: The CCCTC-binding factor (CTCF) is a highly conserved insulator protein that plays various roles in many cellular processes. CTCF is one of the main architecture proteins in higher eukaryotes, and in combination with other architecture proteins and regulators, also shapes the three-dimensional organization of a genome. Experiments show CTCF partially remains associated with chromatin during mitosis. However, the role of CTCF in the maintenance and propagation of genome architectures throughout the cell cycle remains elusive. RESULTS: We performed a comprehensive bioinformatics analysis on public datasets of Drosophila CTCF (dCTCF). We characterized dCTCF-binding sites according to their occupancy status during the cell cycle, and identified three classes: interphase-mitosis-common (IM), interphase-only (IO) and mitosis-only (MO) sites. Integrated function analysis showed dCTCF-binding sites of different classes might be involved in different biological processes, and IM sites were more conserved and more intensely bound. dCTCF-binding sites of the same class preferentially localized closer to each other, and were highly enriched at chromatin syntenic and topologically associating domains boundaries. CONCLUSIONS: Our results revealed different functions of dCTCF during the cell cycle and suggested that dCTCF might contribute to the establishment of the three-dimensional architecture of the Drosophila genome by maintaining local chromatin compartments throughout the whole cell cycle. <![CDATA[<b>Relaxant effects of a hydroalcoholic extract of <i>Ruta graveolens </i>on isolated rat tracheal rings</b>]]> BACKGROUND: Ruta graveolens L. (R. graveolens) is a medicinal plant employed in non-traditional medicines that has various therapeutic properties, including anthelmintic, and vasodilatory actions, among others. We evaluated the trachea-relaxant effects of hydroalcoholic extract of R. graveolens against potassium chloride (KCl)- and carbachol-induced contraction of rat tracheal rings in an isolated organ bath. RESULTS: The results showed that the airway smooth muscle contraction induced by the depolarizing agent (KCl) and cholinergic agonist (carbachol) was markedly reduced by R. graveolens in a concentration-dependent manner, with maximum values of 109 ± 7.9 % and 118 ± 2.6 %, respectively (changes in tension expressed as positive percentages of change in proportion to maximum contraction), at the concentration of 45 μg/mL (half-maximal inhibitory concentration IC50: 35.5 μg/mL and 27.8 μg/mL for KCl- and carbachol-induced contraction, respectively). Additionally, the presence of R. graveolens produced rightward parallel displacement of carbachol dose-response curves and reduced over 35 % of the maximum smooth muscle contraction. CONCLUSIONS: The hydroalcoholic extract of R. graveolens exhibited relaxant activity on rat tracheal rings. The results suggest that the trachea-relaxant effect is mediated by a non-competitive antagonistic mechanism. More detailed studies are needed to identify the target of the inhibition, and to determine more precisely the pharmacological mechanisms involved in the observed biological effects. <![CDATA[<b><i>In ovo </i></b><b>administration of human recombinant leptin shows dose dependent angiogenic effect on chicken chorioallantoic membrane</b>]]> BACKGROUND: Leptin, the cytokine produced by white adipose tissue is known to regulate food energy homeostasis through its hypothalamic receptor. In vitro studies have demonstrated that leptin plays a major role in angiogenesis through binding to the receptor Ob-R present on ECs by stimulating and initiating new capillary like structures from ECs. Various in vivo studies indicate that leptin has diverse effect on angiogenesis. A few reports have showed that leptin exerts pro angiogenic effects while some suggested that it has antiangiogenic potential. It is theoretically highly important to understand the effect of leptin on angiogenesis to use as a therapeutic molecule in various angiogenesis related pathological conditions. Chicken chorio allantoic membrane (CAM) on 9th day of incubation was incubated with 1, 3 and 5 μg concentration of HRL for 72 h using gelatin sponge. Images where taken after every 24 h of incubation and analysed with Angioguant software. The treated area was observed under microscope and histological evaluation was performed for the same. Tissue thickness was calculated morphometrically from haematoxylin and eosin stained cross sections. Reverse transcriptase PCR and immunohistochemistry were also performed to study the gene and protein level expression of angiogenic molecules. RESULTS: HRL has the ability to induce new vessel formation at the treated area and growth of the newly formed vessels and cellular morphological changes occur in a dose dependent manner. Increase in the tissue thickness at the treated area is suggestive of initiation of new capillary like structures. Elevated mRNA and protein level expression of VEGF165 and MMP2 along with the activation of ECs as demonstrated by the presence of CD34 expression supports the neovascularization potential of HRL. CONCLUSION: Angiogenic potential of HRL depends on the concentration and time of incubation and is involved in the activation of ECs along with the major interaction of VEGF 165 and MMP2. It is also observed that 3 μg of HRL exhibits maximum angiogenic potential at 72 h of incubation. Thus our data suggest that dose dependent angiogenic potential HRL could provide a novel role in angiogenic dependent therapeutics such as ischemia and wound healing conditions. <![CDATA[<b>Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl<sub>4</sub>-induced hepatotoxicity in rats</b>]]> BACKGROUND: Carbon tetrachloride (CCl4) induces hepatotoxicity in animal models, including the increased blood flow and cytokine accumulation that are characteristic of tissue inflammation. The present study investigates the hepato-protective effect of rutin on CCl4-induced hepatotoxicity in rats. RESULTS: Forty male Wistar rats were divided into four groups. Group I (control group) received 1 mL/kg of dimethyl sulfoxide intragastrically and 3 mL/kg olive oil intraperitoneally twice a week for 4 weeks. Group II received 70 mg/ kg rutin intragastrically. Groups III and IV received CCl4 (3 mL/kg, 30 % in olive oil) intraperitoneally twice a week for 4 weeks. Group IV received 70 mg/kg rutin intragastrically after 48 h of CCl4 treatment. Liver enzyme levels were determined in all studied groups. Expression of the following genes were monitored with real-time PCR: interleukin-6 (IL-6), dual-specificity protein kinase 5 (MEK5), Fas-associated death domain protein (FADD), epidermal growth factor (EGF), signal transducer and activator of transcription 3 (STAT3), Janus kinase (JAK), B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra-large (Bcl-XL). The CCl4 groups showed significant increases in biochemical markers of hepatotoxicity and up-regulation of expression levels of IL-6, Bcl-XL, MEK5, FADD, EGF, STAT3 and JAK compared with the control group. However, CCl4 administration resulted in significant down-regulation of Bcl2 expression compared with the control group. Interestingly, rutin supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl4. CONCLUSION: CCl4 administration causes alteration in expression of IL-6/STAT3 pathway genes, resulting in hepatotoxicity. Rutin protects against CCl4-induced hepatotoxicity by reversing these expression changes. <![CDATA[<b>Metabolic interactions between hyperhomocysteinemia and endothelin-1 among Tunisian patients with acute coronary diseases</b>]]> BACKGROUND: Acute coronary syndromes (ACS) are complex and polygenic diseases which are a real problem of public health. These syndromes require multidisciplinary studies to understand the pathogenesis mechanisms and metabolic interactions between different risk factors.This study aimed to explore the variation of two coronary risk parameters not mentioned by Framingham cohorts, hyperhomocysteinemia and endothelin-1 (ET-1) in Tunisian coronary and the study of the variation of these parameters based on various cardiac risk factors and metabolic relationship between them.To 157 coronary and 142 healthy subjects, the concentration of homocysteine was quantified by fluorescence polarization immunoassay; the concentration of ET-1 was measured by an analytical technique, the High Performance Liquid Chromatography (HPLC) coupled with mass spectrometry. RESULTS: Our study showed that homocysteine and ET-1 were significantly higher in patients compared to healthy subjects (24.40 ± 12.5 μmol/L vs 7.44 ± 2.5 μmol/L p <0.00001) for homocysteine and (15.2 ± 5.3 nmol/L vs 7.1 ± 2.7 nmol/L, p <0.00001) for ET-1. On the other hand, homocysteine varies according to tobacco and diabetes while ET-1 depends on the sex, hypertension, smoking, obesity and dyslipidemia and a statistically negative correlation was shown between homocysteine and ET-1 in coronary patients (r = -0.66 p <0.00001. CONCLUSION: The study of the variation of these two parameters in coronary patients and metabolic exploration of the relationship between homocysteine and ET-1 according to various risk factors and the interactions between themselves facilitates the decision of therapeutic treatment. <![CDATA[<b>Effect of carbamazepine and gabapentin on excitability in the trigeminal subnucleus caudalis of neonatal rats using a voltage-sensitive dye imaging technique</b>]]> BACKGROUND: The antiepileptic drugs carbamazepine and gabapentin are effective in treating neuropathic pain and trigeminal neuralgia. In the present study, to analyze the effects of carbamazepine and gabapentin on neuronal excitation in the spinal trigeminal subnucleus caudalis (Sp5c) in the medulla oblongata, we recorded temporal changes in nociceptive afferent activity in the Sp5c of trigeminal nerve-attached brainstem slices of neonatal rats using a voltage-sensitive dye imaging technique. RESULTS: Electrical stimulation of the trigeminal nerve rootlet evoked changes in the fluorescence intensity of dye in the Sp5c. The optical signals were composed of two phases, a fast component with a sharp peak followed by a long-lasting component with a period of more than 500 ms. This evoked excitation was not influenced by administration of carbamazepine (10, 100 and 1,000 μΜ) or gabapentin (1 and 10 μΜ), but was increased by administration of 100 μΜ gabapentin. This evoked excitation was increased further in low Mg²+ (0.8 mM) conditions, and this effect of low Mg²+ concentration was antagonized by 30 μM DL-2-amino-5-phosphonopentanoic acid (AP5), a N-methyl-D-as-partate (NMDA) receptor blocker. The increased excitation in low Mg²+ conditions was also antagonized by carbamazepine (1,000 μM) and gabapentin (100 μM). CONCLUSION: Carbamazepine and gabapentin did not decrease electrically evoked excitation in the Sp5c in control conditions. Further excitation in low Mg²+ conditions was antagonized by the NMDA receptor blocker AP5. Carbamazepine and gabapentin had similar effects to AP5 on evoked excitation in the Sp5c in low Mg²+ conditions. Thus, we concluded that carbamazepine and gabapentin may act by blocking NMDA receptors in the Sp5c, which contributes to its anti-hypersensitivity in neuropathic pain. <![CDATA[<b>Suppression of miR-221 inhibits glioma cells proliferation and invasion via targeting SEMA3B</b>]]> BACKGROUND: Gliomas are the most common primary tumors in the central nervous system. Due to complicated signaling pathways involved in glioma progression, effective targets for treatment and biomarkers for prognosis prediction are still scant. RESULTS: In this study we revealed that a new microRNA (miR), the miR-221, was highly expressed in the glioma cells, and suppression of miR-221 resulted in decreased cellular proliferation, migration, and invasion in glioma cells. Mechanistic experiments validated that miR-221 participates in regulating glioma cells proliferation and invasion via suppression of a direct target gene, the Semaphorin 3B (SEMA3B). The rescue experiment with miR-221 and SEMA3B both knockdown results in significant reversion of miR-221 induced phenotypes. CONCLUSION: Taken together, our findings highlight an unappreciated role for miR-221 and SEMA3B in glioma. <![CDATA[<b>Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells</b>]]> BACKGROUND: Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 μg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. METHODS: The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. RESULTS AND CONCLUSION: In the present findings we showed that low concentration of DC (<2.0 μg/mL) exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 μg/mL) significantly (p < 0.001) attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 μg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 μg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of cas-pase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 μg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway. <![CDATA[<b>Sortin2 enhances endocytic trafficking towards the vacuole in <i>Saccharomyces cerevisiae</i></b>]]> BACKGROUND: A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae. RESULTS: A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS: Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology. <![CDATA[<b>Effects of karanjin on cell cycle arrest and apoptosis in human A549, HepG2 and HL-60 cancer cells</b>]]> BACKGROUND: We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells). RESULTS: MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells. CONCLUSION: Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy. <![CDATA[<b>CD4+ T cells in aged or thymectomized recipients of allogeneic stem cell transplantations</b>]]> BACKGROUND: CD4+CD25highFOXP3+ regulatory T (Treg) cells, which include thymus-derived and peripherally induced cells, play a central role in immune regulation, and are therefore crucial to prevent graft-versus-host disease (GVHD). The increasing use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for elderly patients with thymus regression, and our case of allo-HSCT shortly after total thymectomy, raised questions about the activity of thymus-derived Treg cells and peripherally induced Treg cells, which are otherwise indistinguishable. RESULTS: We found that despite pre-transplant thymectomy or older age, both naïve and effector Treg cells, as well as naïve and effector conventional T cells, proliferated in allo-HSCT recipients. Higher proportions of total Treg cells 1 month post allo-HSCT, and naïve Treg cells 1 year post allo-HSCT, appeared in patients achieving complete chimera without developing significant chronic GVHD, including our thymectomized patient, compared with patients who developed chronic GVHD. CONCLUSIONS: Treg cells that modulate human allogeneic immunity may arise peripherally as well as in the thymus of allo-HSCT recipients. <![CDATA[<b>Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee</b>]]> BACKGROUND: Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expression profile and orthology in RARRES2 genes are unknown aspects in the biology of this multigene family in primates. Thus; we attempt to describe expression profile and phylogenetic relationship as complementary knowledge in the function of this gene in primates. To do that, we performed A RT-PCR from different tissues obtained during necropsies. Also we tested the hypotheses of positive evolution, purifying selection, and neutrality. And finally a phylogenetic analysis was made between primates RARRES2 protein. RESULTS: RARRES2 transcripts were present in liver, lung, adipose tissue, ovary, pancreas, heart, hypothalamus and pituitary tissues. Expression in kidney and leukocytes were not detectable in either species. It was determined that the studied genes are orthologous. CONCLUSIONS: RARRES2 evolution fits the hypothesis of purifying selection. Expression profiles of the RARRES2 gene are similar in baboons and chimpanzees and are also phylogenetically related. <![CDATA[<b>Saline-induced changes of epicuticular waxy layer on the <i>Puccinellia tenuiflora </i>and <i>Oryza sativa </i>leave surfaces</b>]]> BACKGROUND: The epicuticular waxy layer of plant leaves enhances the extreme environmental stress tolerance. However, the relationship between waxy layer and saline tolerance was not established well. The epicuticular waxy layer of rice (Oryza sativa L.) was studied under the NaHCO3 stresses. In addition, strong saline tolerance Puccinellia tenuiflora was chosen for comparative studies. RESULTS: Scanning electron microscope (SEM) images showed that there were significant changes in waxy morphologies of the rice epicuticular surfaces, while no remarkable changes in those of P. tenuiflora epicuticular surfaces. The NaHCO3-induced morphological changes of the rice epicuticular surfaces appeared as enlarged silica cells, swollen corns-shapes and leaked salt columns under high stress. Energy dispersive X-ray (EDX) spectroscopic profiles supported that the changes were caused by significant increment and localization of [Na+] and [Cl-] in the shoot. Atomic absorption spectra showed that [Na+]shoot/[Na+]root for P. tenuiflora maintained stable as the saline stress increased, but that for rice increased significantly. CONCLUSION: In rice, NaHCO3 stress induced localization and accumulation of [Na+] and [Cl-] appeared as the enlarged silica cells (MSC), the swollen corns (S-C), and the leaked columns (C), while no significant changes in P. tenuiflora. <![CDATA[<b><i>stg </i>fimbrial operon from S. Typhi STH2370 contributes to association and cell disruption of epithelial and macrophage-like cells</b>]]> BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi) stg operon, encoding a chaperone/usher fimbria (CU), contributes to an increased adherence to human epithelial cells. However, one report suggests that the presence of the Stg fimbria impairs the monocyte-bacteria association, as deduced by the lower level of invasion to macrophage-like cells observed when the stg fimbrial cluster was overexpressed. Nevertheless, since other CU fimbrial structures increase the entry of S. Typhi into macrophages, and considering that transcriptomic analyses revealed that stg operon is indeed expressed in macrophages, we reassessed the role of the stg operon in the interaction between S. Typhi strain STH2370 and human cells, including macrophage-like cells and mononuclear cells directly taken from human peripheral blood. RESULTS: We compared S. Typhi STH2370 WT, a Chilean clinical strain, and the S. Typhi STH2370 Astg mutant with respect to association and invasion using epithelial and macrophage-like cells. We observed that deletion of stg operon reduced the association and invasion of S. Typhi, in both cellular types. The presence of the cloned stg operon restored the WT phenotype in all the cases. Moreover, we compared Salmonella enterica sv. Typhimurium 14028s (S. Typhimurium, a serovar lacking stg operon) and S. Typhimurium heterologously expressing S. Typhi stg. We found that the latter presents an increased cell disruption of polarized epithelial cells and an increased association in both epithelial and macrophage-like cells. CONCLUSIONS: S. Typhi stg operon encodes a functional adhesin that participates in the interaction bacteria-eukary-otic cells, including epithelial cells and macrophages-like cells. The phenotypes associated to stg operon include increased association and consequent invasion in bacteria-eukaryotic cells, and cell disruption. <![CDATA[<b>CoagVDb: a comprehensive database for coagulation factors and their associated SAPs</b>]]> The current state of the art in medical genetics is to identify and classify the functional (deleterious) or non-functional (neutral) single amino acid substitutions (SAPs), also known as non-synonymous SNPs (nsSNPs). The primary goal is to elucidate the mechanisms through which functional SAPs exert their effects, and ultimately interrogating this information for association with complex phenotypes. This work focuses on coagulation factors involved in the coagulation cascade pathway which plays a vital role in the maintenance of homeostasis in the human system. We developed an integrated coagulation variation database, CoagVDb, which makes use of the biological information from various public databases such as NCBI, OMIM, UniProt, PDB and SAPs (rsIDs/variant). CoagVDb enriched with computational prediction scores classify SAPs as either deleterious or tolerated. Also, various other properties are incorporated such as amino acid composition, secondary structure elements, solvent accessibility, ordered/disordered regions, conservation, and the presence of disulfide bonds. This specialized database provides integration of various prediction scores from different computational methods along with gene, protein, and disease information. We hope our database will act as a useful reference resource for hematologists to reveal protein structure-function relationship and disease genotype-phenotype correlation. <![CDATA[<b>Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia</b>]]> BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD) after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A) and in vitro angiogen-esis in retinal pigment epithelium (RPE). RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF). We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD. <![CDATA[<b>Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E</b>]]> BACKGROUND: Gossypol is a chemical present in the seeds of cotton plants (Gossypium sp.) that reduces fertility in farm animals. Vitamin E is an antioxidant and may help to protect cells and tissues against the deleterious effects of free radicals. The aim of this study was to evaluate the mechanisms of reproductive toxicity of gossypol in rats and the protective effects of vitamin E. Forty Wistar rats were used, divided into four experimental groups (n = 10): DMSO/ saline + corn oil; DMSO/saline + vitamin E; gossypol + corn oil; and gossypol + vitamin E. RESULTS: Fertility was significantly reduced in male rats treated with gossypol in that a significant decrease in epididy-mal sperm count was observed (P < 0.05) and the number of offspring was significantly reduced in females mated with them (P < 0.05). This dysfunction was prevented by vitamin E. Gossypol caused a significant increase in the activity of the enzymes glutathione peroxidase (P < 0.01) and glutathione reductase (P < 0.01), but vitamin E did not reduce the enzyme activities (P &gt; 0.05). The levels of reduced glutathione and pyridine nucleotides in testis homogen-ate were significantly reduced by gossypol (P < 0.05 and P < 0.01, respectively) and this reduction was accompanied by increased levels of oxidized glutathione (P < 0.05). Vitamin E showed a preventive effect on the changes in the levels of these substances. Gossypol significantly increased the levels of malondialdehyde (P < 0.01), a lipid peroxida-tion indicator, whereas treatment with vitamin E inhibited the action of the gossypol. Vitamin E prevented a decrease in mitochondrial ATP induced by gossypol (P < 0.05). CONCLUSIONS: This study suggests that the reproductive dysfunction caused by gossypol may be related to oxidative stress and mitochondrial bioenergetic damage and that treatment with vitamin E can prevent the infertility caused by the toxin. <![CDATA[<b>Amniotic fluid exerts a neurotrophic influence on fetal neurodevelopment via the ERK/GSK-3 pathway</b>]]> BACKGROUND: The fetus is surrounded by the amniotic fluid (AF) contained by the amniotic sac of the pregnant female. The AF is directly conveyed to the fetus during pregnancy. Although AF has recently been reported as an untapped resource containing various substances, it remains unclear whether the AF could influence fetal neurodevelopment. RESULTS: We used AF that was extracted from embryos at 16 days in pregnant SD rat and exposed the AF to the neural cells derived from the embryos of same rat. We found that the treatment of AF to cortical neurons increased the phosphorylation in ERK1/2 that is necessary for fetal neurodevelopment, which was inhibited by the treatment of MEK inhibitors. Moreover, we found the subsequent inhibition of glycogen synthase kinase-3 (GSK-3), which is an important determinant of cell fate in neural cells. Indeed, AF increased the neural clustering of cortical neurons, which revealed that the clustered cells were proliferating neural progenitor cells. Accordingly, we confirmed the ability of AF to increase the neural progenitor cells through neurosphere formation. Furthermore, we showed that the ERK/GSK-3 pathway was involved in AF-mediated neurosphere enlargement. CONCLUSIONS: Although the placenta mainly supplies oxygenated blood, nutrient substances for fetal development, these findings further suggest that circulating-AF into the fetus could affect fetal neurodevelopment via MAP kinases-derived GSK-3 pathway during pregnancy. Moreover, we suggest that AF could be utilized as a valuable resource in the field of regenerative medicine.