PARABOLIC PERTURBATION IN THE FAMILY $z \mapsto 1 + 1/wz^d$

JUAN BOBENRIETH *
Universidad de Bío - Bío - Chile

Abstract

Consider the family of rational maps $\mathcal{F}_d = \{z \mapsto f_w(z) = 1 + \frac{1}{wz^d} : w \in \mathbb{C}\setminus\{0\}\}$ ($d \in \mathbb{N}, d \geq 2$), and the hyperbolic component $A_1 = \{w : f_w \text{ has an attracting fixed point} \}$. We prove that if $w_0 \in \partial A_1$ is a parabolic parameter with corresponding multiplier a primitive q–th root of unity, $q \geq 2$, then there exists a hyperbolic component W_q, attached to A_1 at the point w_0, which contains w–values for which f_w has an attracting periodic cycle of period q.

1991 Mathematics Subject Classification: Primary 30D05, 58F23.

*Partially supported by Fondecyt, Project 1990534
1. Introduction

For any $d \in \mathbb{N}, d \geq 2$, the family $\mathcal{F}_d = \{ z \mapsto 1 + \frac{1}{w z^d} : w \in \mathbb{C} \setminus \{0\} \}$ is a normal form for the set of rational maps of degree d which have exactly two critical points, one of which maps onto the other under one iteration. These families have been considered in [3], [4] (for the special case $d = 2$), and in [1](for any d).

It is well known that a rational map f is hyperbolic if and only if all critical points of f tend to attracting cycles under iteration. Since the members of the family \mathcal{F}_d have only one forward orbit of their critical points, f_w is hyperbolic if and only if f_w has an attracting periodic orbit. The connected components of the parametric set $\mathcal{H}_d = \{ w : f_w(z) = 1 + 1/w z^d \text{ has an attracting periodic orbit} \}$ are called the hyperbolic components of the family \mathcal{F}_d.

Following the ideas used in [2], we can prove the following one.

Theorem If f_{w_0} has a fixed point z_0 such that the multiplier $\lambda_0 = f'_{w_0}(z_0)$ is a primitive q–th root of unity, $q \geq 2$, then there exists a hyperbolic component W_q, which contains w–values for which f_w has an attracting periodic cycle of period q, with $w_0 \in \partial W_q$.

In Section 2 we prove the Theorem.

2. Proof of Theorem

It is clear that for any $u \in \mathbb{C} \setminus \{0, -d\}$,

$\begin{align*}
f_w \text{ has a fixed point of multiplier } u & \iff w = \frac{d}{u} \left(1 + \frac{1}{u^d}\right)^{d+1}.
\end{align*}$

$\begin{align*}
f_w \text{ has a fixed point of multiplier } u & \iff w = -\frac{d}{u} \left(1 + \frac{1}{u^d}\right)^{d+1}.
\end{align*}$

In fact, $z(u) = \frac{d}{d + u}$ is the fixed point of multiplier u.

Let $g_u(z) := \frac{d}{d + u} \left(1 + \frac{1}{u^d}\right)^{d+1} (z)$, that is,

$\begin{align*}
g_u(z) = 1 - \frac{d^d u}{(d + u)^{d+1} z^d}, \quad u \in \mathbb{C} \setminus \{0, -d\}.
\end{align*}$

Therefore, g_u has at $z(u) = \frac{d}{d + u}$ a fixed point of multiplier u. Now, we will make an analytic conjugation:
Let \(M_u(z) := z - z(u) \), and consider \(h_u := M_u \circ g_u \circ M_u^{-1} \).

For any \(u \in \mathbb{C} \setminus \{0, -d\} \), \(h_u \) is a rational map analytically conjugate to \(f_w \) (where \(w = -\frac{d}{u} \left(1 + \frac{u}{d} \right)^{d+1} \)), and which has at zero a fixed point of multiplier \(u \).

Explicitly,
\[
h_u(z) = \frac{u}{d+u} \cdot \frac{(z(d+u)+d)^{-d}}{(z(d+u)+d)^d}, \quad u \in \mathbb{C} \setminus \{0, -d\}.
\]

Note that, for any \(q \in \mathbb{N} \), \(h_u^q(z) = u^q z \cdot \Phi_{u,q}(z) \), where \(\Phi_{u,q} \) is a rational map with \(\Phi_{u,q}(0) = 1 \). Hence, in a neighbourhood of \(z = 0 \) we have:
\[
h_u^q(z) = u^q z + a_2 z^2 + \ldots.
\]

In what follows, \(u_0 \) denotes a primitive \(q \)-th root of unity, \(q \geq 2 \) (that is, \(u_0^q = 1 \), and \(u_0^k \neq 1 \), for all \(1 \leq k \leq q - 1 \)). In order to prove the above theorem, we show the following results:

Lemma 1: \(h_{u_0}^q \) has at \(0 \) a fixed point of multiplicity \(q + 1 \).

Proof: Since \(h_{u_0} \) has at zero a fixed point of multiplier a primitive \(q \)-th root of unity, we have that in a neighbourhood of zero,
\[
h_{u_0}^q(z) = z + a z^{kq+1} + \ldots \text{ where } a \neq 0, \text{ and } k \in \mathbb{N}.
\]

From the fact that \(h_{u_0} \) has only one forward orbit of critical points, \(k = 1 \).

Therefore, \(h_{u_0}^q(z) = z + a z^{q+1} + \ldots. \)

Next, we will show that for \(u \) near to \(u_0 \), the \((q + 1) \)-fold fixed point zero of \(h_{u_0}^q \) will split up into \((q+1) \) simple fixed points of \(h_u^q \), which are: \(0 \), and \(\{ z_1(u), z_2(u), \ldots, z_q(u) \} \); the latter forms a periodic orbit of period \(q \) of \(h_u \).

Lemma 2: There exist \(\varepsilon > 0 \) and \(r > 0 \) such that for each \(u \in \mathbb{C} \) with \(0 < |u - u_0| < r \), the rational map \(h_u^q \) has precisely \(q \) fixed points in the punctured disc \(0 < |z| < \varepsilon \). Furthermore, these \(q \) points form a cycle of length \(q \) for \(h_u \).
Proof: Since the zeros of an analytic function (not identically zero) are isolated, there exist $\varepsilon, \ 0 < \varepsilon < \frac{d-1}{d+2}$, such that:

$$h^k_{u_0}(z) - z \neq 0 \quad \text{for} \quad 0 < |z| < \varepsilon', \quad \text{and} \quad 1 \leq k \leq q,$$

where $\varepsilon' := \frac{2}{d-1}[(2d-1)^d - d^d] \cdot \varepsilon$. (Note that $\varepsilon < \varepsilon'$).

Let $\gamma_{\varepsilon} = \{ z \in \mathbb{C} : |z| = \varepsilon \}$, $\gamma_{\varepsilon'} = \{ z \in \mathbb{C} : |z| = \varepsilon' \}$, and

$$\alpha := \min_{1 \leq k \leq q} \{ |h^k_{u_0}(z) - z| : z \in \gamma_{\varepsilon} \cup \gamma_{\varepsilon'} \} > 0.$$

It is clear that there exists $r, \ 0 < r < 1$, such that:

$$|h^k_u(z) - z| \geq \frac{\alpha}{2}, \ \text{for all} \ |u - u_0| < r, \ z \in \gamma_{\varepsilon} \cup \gamma_{\varepsilon'}, \ \text{and} \ 1 \leq k \leq q.$$

From the Argument Principle, the number $N_{k,\varepsilon}(u)$ (resp. $N_{k,\varepsilon'}(u)$) of fixed points of h^k_u in the disk $|z| < \varepsilon$ (Resp. $|z| < \varepsilon'$) for $|u - u_0| < r$ and $1 \leq k \leq q$, is given by:

$$N_{k,\varepsilon}(u) = \frac{1}{2\pi i} \oint_{|z| = \varepsilon} \frac{(h^k_u)'(z) - 1}{h^k_u(z) - z} \, dz$$

(resp. $N_{k,\varepsilon'}(u) = \frac{1}{2\pi i} \oint_{|z| = \varepsilon'} \frac{(h^k_u)'(z) - 1}{h^k_u(z) - z} \, dz$)

From above we conclude that $u \mapsto N_{k,\varepsilon}(u)$, and $u \mapsto N_{k,\varepsilon'}(u)$, are continuous, and hence are constant since they are integer-valued.

Therefore,

$$N_{k,\varepsilon}(u) = N_{k,\varepsilon}(u_0) \quad \text{and} \quad N_{k,\varepsilon'}(u) = N_{k,\varepsilon'}(u_0)$$

for $|u - u_0| < r$ and $1 \leq k \leq q$.

Hence, $|u - u_0| < r \implies$

$$\left\{ \begin{array}{ll}
N_{k,\varepsilon}(u) = N_{k,\varepsilon'}(u) = 1 & , \quad \text{if} \quad 1 \leq k \leq (q - 1) \\
N_{k,\varepsilon}(u) = N_{k,\varepsilon'}(u) = (q + 1) & , \quad \text{if} \quad k = q.
\end{array} \right.$$

We conclude that 0 is the unique fixed point of $h^k_u(1 \leq k \leq (q - 1))$ in the disk $|z| < \varepsilon'$. On the other hand, for $0 < |u - u_0| < r$, h^q_u has at zero a simple fixed point, and has other q fixed points in the punctured disk $0 < |z| < \varepsilon$. Note that for $|u - u_0| < r$, h^q_u has no fixed points in $\varepsilon < |z| < \varepsilon'$, because $N_{q,\varepsilon}(u) = N_{q,\varepsilon'}(u)$.

Furthermore, using the facts that $\varepsilon < \frac{d}{d+2}$, $r < 1$, a simple calculation shows that:

$$\forall \ u \in \{ u : |u - u_0| < r \} , \quad |z| < \varepsilon \ \Rightarrow \ |h^k_u(z)| < \varepsilon'.$$
Hence, if $z_1(u)$ denotes one of the fixed points of h_u^q with $0 < |z_1(u)| < \varepsilon$, then $z_j(u) = h_u^j(z_1(u))$, for $0 \leq j \leq (q - 1)$, are the q fixed points of h_u^q in the punctured disk $0 < |z| < \varepsilon$ (they are clearly different pairwise).

Therefore, $\{z_1(u), h_u(z_1(u)), \ldots, h_u^{q-1}(z_1(u))\}$ are the q fixed points of h_u^q in the punctured disk $0 < |z| < \varepsilon$, and they form a cycle of length q of h_u, for $u \in \{u : 0 < |u - u_0| < r\}$.

For $u \in \{u : 0 < |u - u_0| < r\}$, $\lambda(u)$ denotes the multiplier of the periodic cycle of period q of h_u, contained in the punctured disk $0 < |z| < \varepsilon$.

Lemma 3: $u \mapsto \lambda(u)$ is an analytic function in the disk $\{u : |u - u_0| < r\}$. Furthermore, $\lambda(u_0) = 1$.

Proof: For $0 < |u - u_0| < r$, let $\{z_1(u), z_2(u), \ldots, z_q(u)\}$ be the periodic cycle of period q of h_u, contained in the punctured disk $0 < |z| < \varepsilon$. Furthermore, for $u = u_0$, let $z_1(u_0) = z_2(u_0) = \ldots = z_q(u_0) = 0$.

Consider the polynomial $P_u(z) = \prod_{j=1}^q (z - z_j(u))$.

We know that $P_u(z) = z^q + a_{q-1}(u)z^{q-1} + \ldots + a_1(u)z + a_0(u)$, where,

$$a_{q-k}(u) = (-1)^k \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq q} z_{j_1}(u)z_{j_2}(u) \ldots z_{j_k}(u)$$

are the elementary symmetric functions in $z_1(u), z_2(u), \ldots, z_q(u)$.

Consider the polynomials:

$$\sigma_k(u) = \sum_{j=1}^q (z_j(u))^k, \quad k = 1, 2, \ldots, q$$

A calculation shows that each elementary symmetric function can be written as a polynomial in $\sigma_1(u), \sigma_2(u), \ldots, \sigma_q(u)$. Indeed, we have that:

$$a_{q-1}(u) = -\sigma_1(u) \quad a_{q-2}(u) = \frac{1}{2}[\sigma_1(u)^2 - \sigma_2(u)]$$

$$a_{q-3}(u) = \frac{1}{6}[3\sigma_1(u)\sigma_2(u) - 2\sigma_3(u) - (\sigma_1(u))^3]$$

and, so on.
On the other hand, by the Residue Theorem we have that for
$0 < |u - u_0| < r$, and $1 \leq k \leq q$,

$$
\sigma_k(u) = \frac{1}{2\pi i} \oint_{|z| = \varepsilon} z^k \frac{(h_u^q)'(z) - 1}{h_u^q(z) - z} \, dz
$$

Note that the above formula holds also for $u = u_0$.

Hence, by the Leibniz’s rule we conclude that :

$$
\forall \ k \in \{1, 2, \ldots, q\}, \ u \mapsto \sigma_k(u)
$$

is holomorphic in the disk $|u - u_0| < r$.

Therefore, $a_0(u), a_1(u), \ldots, a_{q-1}(u)$ are holomorphic functions in
the disk $|u - u_0| < r$.

For the multiplier, we have :

$$
\lambda(u) = (h_u^q)'(z_1(u)) = \prod_{j=1}^{q} h_u'(z_j(u)) = \prod_{j=1}^{q} \frac{ud^{d+1}}{[z_j(u)(d + u) + d]^{d+1}}
$$

Hence,

$$
\lambda(u) = \frac{d^{(d+1)q}u^q}{[\prod_{j=1}^{q}(z_j(u)(d + u) + d)]^{d+1}}, \ \forall \ |u - u_0| < r
$$

Since, $\forall \ u \in \{u : |u - u_0| < r\}$, $\prod_{j=1}^{q}(z_j(u)(d + u) + d) = (-d + u)^q \prod_{j=1}^{q}(\frac{d}{d + u} - z_j(u)) = (-d + u)^q P_u\left(\frac{-d}{d + u}\right)$,

we conclude that $u \mapsto \lambda(u)$ is analytic in $|u - u_0| < r$. Finally, is clear that $\lambda(u_0) = 1$.

Proof of Theorem: If $f_{w_0}(z) = 1 + 1/w_0 z^d$ has a fixed point z_0 with corresponding multiplier $u_0 = f'_{w_0}(z_0)$ a primitive q–th root of unity, $q \geq 2$, then h_{u_0} has at zero a fixed point of multiplier u_0.

By lemma 2, there exists $r > 0$ such that for each $u \in \mathbb{C}$ with $0 < |u - u_0| < r$, the rational map h_u has a periodic orbit $\{z_1(u), z_2(u), \ldots, z_q(u)\}$ of period q. Furthermore, by lemma 3 the multiplier $\lambda(u)$ of that periodic orbit, is an analytic function
Parabolic perturbation in the family \(z \mapsto 1 + 1/wz^d \) in the disk \(B(u_0, r) := \{ u : |u - u_0| < r \} \), where \(\lambda(u_0) = 1 \). \(\lambda \) is clearly non-constant, and therefore is open. Then we conclude that there exists a hyperbolic component of period \(q \), \(W_q \), such that \(w_0 \in \partial W_q \).

References

Received : June 2001.

Juan Bobenrieth
Departamento de Matemáticas
Facultad de Ciencias
Universidad del Bío-Bío
Casilla 5-C
Concepción
Chile
e-mail : jbobenri@ubiobio.cl