Abstract

Let $A \cong kQ/I$ be a basic and connected finite dimension algebra over closed field k. In this note show that in case $B = A[M]$ is a tame one-point extension of a tame concealed algebra A by an indecomposable module M, then the trivial extension $T(B) = B \propto DB$ is tame if and only if the module M is regular.
1. Introduction.

Throughout this paper, k denotes an algebraically closed field. By algebra A, we mean always a basic, connected and finite dimensional algebra over k (associative with 1). We denote by $\text{mod} A$ the category of finitely generated right A-modules, and $\mathcal{D}^b(A)$ the derived category of bounded complexes over the abelian category $\text{mod} A$ (see [H]).

The concept of repetitive algebra was introduced by Hughes - Waschbush ([HW]) in 1983, where their main interest was to obtain the classification of the finite representation self-injective algebras. In section 2 we recall some known facts about repetitive algebra. In this note, we will use the properties of repetitive categories to study the representation type of the trivial extension $T(B) = B \bowtie DB$, where B is a one-point extension of a tame concealed algebra by an indecomposable module.

In section 3 we establish our main theorem on the representation type of the trivial extension $T(B)$. For that purpose, we prove that there exist a strong relation between the trivial extension $T(B)$ and the class of clannish algebras introduced by Crawley-Boevey in [C-B]. As a consequence of our main theorem we show that all tree algebra with non-negative Euler form χ_A of corank $\chi_A \leq 2$, have trivial extension of tame representation type.

This paper was done during a postdoctoral stay of the first named author at UNAM. Both authors thankfully acknowledge the financial support of UNAM and CONACyT, México.

2. Preliminaries.

We recall that a quiver $Q = (Q_0, Q_1)$ is an oriented graph, where Q_0 is the set of vertices and Q_1 is the set of arrows. The ordinary quiver associated to an algebra A will be denote by Q_A. The k-algebra A will be called triangular when Q_A has no oriented cycles. For each vertex i of Q_A, we shall denote by e_i the corresponding primitive idempotent of A, and by S_i the corresponding simple A-module. We denote P_i (respectively I_i) the projective cover (respectively, the injective envelope) of S_i. A bound quiver algebra $A \cong kQ/I$ will sometimes be considered as a k-category.
Let \mathcal{H} be a Krull-Schmidt category. By definition, the quiver $\Gamma(\mathcal{H})$ of \mathcal{H} has as vertices the isomorphism classes $[M]$ of indecomposable objects $M \in \mathcal{H}$, and there are many arrows $[M] \rightarrow [N]$ as the dimension of the space of irreducible maps from M to N in \mathcal{H} (see VII.1 [ARS]). If $\mathcal{H} = \text{mod}\, A$ or $D^b(A)$, then $\Gamma(\mathcal{H})$ is a translation quiver (see 2.1 in [R]). The quiver $\Gamma(\text{mod}\, A)$, or Γ_A, is called the Auslander-Reiten quiver of A. A translation quiver Γ is called a tube (see V III. 4 in [ARS]), if it contains cyclic paths and its topological realization is $|\Gamma| = S^1 \times \mathbb{R}^+_0$ (where S^1 is the unit circle and \mathbb{R}^+_0 is the set of non-negative real numbers). A k-category A is called \tilde{A}-free whenever it contains no full sub category $B \cong kQ$ where the underlying graph of Q is \mathbb{A}_n, for some n.

For the basic definitions and results of tilting theory, we refer the reader to [A1]. Two finite-dimensional k-algebras A and B are called tilting-cotilting equivalent, if there exist a sequence of algebras $A = A_0, A_1, ..., A_{m+1} = B$ and a sequence of modules T^i_A ($0 \leq i \leq m$) such that $A_{i+1} = \text{End}T^i_A$, and T^i_A is either a tilting or cotilting module (see [A1]).

The one-point extension (respectively, coextension) of an algebra A by an A-module M will be denoted by $A[M]$ (respectively, $[M]A$). Let A be a triangular algebra and i a sink in Q_A. The reflection $S^+_i A$ (see [HW]), of A is defined as the quotient of the one-point extension $A[M]$ by the bilateral ideal generated by e_i. Dually, starting with a source j, we define the reflection $S^-_j A$.

By a polynomial-growth critical algebra, shortly pg-critical algebra (see 3 in [NS]) we mean an algebra A satisfying the following conditions:

1) A or A^{op} is of one of the following form:

\[
C[M] = \begin{bmatrix} k & M \\ 0 & C \end{bmatrix}, \quad C[N,t] = \begin{bmatrix} k & k & \ldots & k & k & N \\ k & k & \ldots & k & k & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ k & k & \ldots & k & 0 \\ 0 & k & \ldots & k & 0 \\ 0 & 0 & \ldots & 0 & C \end{bmatrix}
\]
where C is a representation infinite tilted algebra of type \tilde{D}_n with $(4 \leq n)$, with a complete slice in the preinjective component, and M (respectively, N) is an indecomposable regular C-module of regular length 2 (respectively, regular length 1) lying in a tube T in Γ_C having $n - 2$ rays, and $t + 1$ ($2 \leq t$) is the number of objects in $C[N,t]$ which are not in C.

2) Every proper convex sub category of A is of polynomial growth.

In particular, we say that the algebra A is 2-tubular if $A = \tilde{D}_n[M]$, where $M \in \text{ind}\tilde{D}_n$ is regular indecomposable of length 2 lying in a tube T in $\Gamma_{\tilde{D}_n}$ having $n - 2$ rays.

Proposition 2.1 *(1.4 in [P1]).* A pg-critical algebra A is derived-equivalent to an algebra given by the following quiver:

![Figure 1](image)

With the commutative relations, indicated by dotted edges.

Let A be a finite-dimensional k-algebra, and $D = Hom_k(-, k)$ denote the standard duality on $\text{mod}A$. The repetitive algebra \tilde{A} (see [HW]) of A is the self-injective, locally finite-dimensional algebra without identity, defined by:

$$
\tilde{A} = \begin{pmatrix}
\ddots & & & & 0 \\
& A & & & \\
& DA & A & & \\
& DA & A & \ddots & \\
0 & & & & \ddots
\end{pmatrix}
$$
where matrices have only finitely many non-zero entries, addition is the usual addition of matrices, and multiplication is induced from the canonical bimodule structure of $DA = \text{Hom}_k(A, k)$ and the zero map $DA \otimes DA \to 0$.

It was proved in [W] that if T_A is a tilting module and $B = \text{End}T_A$, then $\text{mod}\hat{A} \cong \text{mod}\tilde{B}$, where mod denote a stable category in the sense of chapter X in [ARS].

The repetitive algebra \hat{A} was introduced as the Galois covering (see [G]) of the trivial extension $T(A) = A \ltimes DA$ of A by its minimal injective cogenerator DA. Let ν the Nakayama automorphism of \hat{A} and $G = \langle \nu \rangle$. We consider \hat{A} as k-category, then we have the Galois cover functor: $F : \hat{A} \to (\hat{A}/G)$, where each element of \hat{A} corresponds to an orbit. This functor induces the push-down functor $F_\chi : \text{mod}\hat{A} \to \text{mod}(\hat{A}/G)$ and pull-up functor $F_\gamma : \text{mod}(\hat{A}/G) \to \text{mod}\hat{A}$, and by 2.2 in [HW] we know that $T(A) \cong \hat{A}/G$.

A k-algebra \hat{A} is called (ν_A)-exhaustive, when the push-down functor $F_\chi : \text{mod}\hat{A} \to \text{mod}T(A)$ associated to the Galois cover functor $F : \hat{A} \to T(A)$ is dense.

We say that the k-algebra A is of locally finite support, if for each indecomposable projective module P, the isomorphism class of the indecomposable projective module P' is such that the number of indecomposable module M, with $\text{Hom}_A(P, M) \neq 0$ and $\text{Hom}_A(P', M) \neq 0$ is finite.

In particular, in [LDS] it is show that: If \hat{A} is of locally finite support if and only if the $\text{gldim} A$ (global dimension) is strong and finite, that is, the complexes of the derived category has bounded length.

In [LDS] it was proved that if a k-algebra A is locally support finite, then A is ν_A-exhaustive. Now, the following theorem given by Assem and Skowroński in [AS2], establishes a classification of the repetitive algebra \hat{A} which are locally support finite.

Theorem 2.1. Let A be a k-algebra. The following conditions are equivalent:

i) \hat{A} is tame and exhaustive.

ii) \hat{A} is tame and locally support finite.

iii) There exist an algebra B which is either tilted of Dynkin type,
or representation-infinite tilted of Euclidean type, or tubular, such that \(\hat{A} \cong \hat{B} \).

iv) There exist an algebra \(C \) which is either hereditary of Dynkin or Euclidean type, or tubular canonical, such that \(A \) and \(C \) are tilting-cotilting equivalent.

v) \(\text{mod}\hat{A} \) is cycle-finite.

vi) There exist an algebra \(C \) which is either hereditary of Dynkin or Euclidean type, or tubular canonic such that \(\text{mod}\hat{A} \cong \text{mod}\hat{C} \).

3. Representation of \(T(A) \).

Let \(Q \) be a quiver, \(Sp \) be a subset of the loops of \(Q \), and \(R \) be a set of relations for \(Q \). We call the element of \(Sp \) special loops, the remaining arrows are called ordinary. Let \(R^{Sp} := \{x^2 - x : x \in Sp\} \), and write \((R) \) for the ideal in \(kQ/(R^{Sp}) \) generated by the element of \(R \) and denote \(J \) the ideal of \(kQ/(R^{Sp}) \) generated by the ordinary arrows.

A triple \((Q, Sp, R) \) as above is called clannish (see 2.5 in \([C-B] \)) if the following conditions hold:

1) \((R) \subset J^2 \)

2) for any vertex of \(Q \) at most 2 arrows start, and at most 2 arrows stop;

3) for every ordinary arrow \(\beta \) there is at most one arrow \(\alpha \) with \(\alpha \beta \notin R \), and at most one arrow \(\gamma \) with \(\beta \gamma \notin R \).

We consider now the following lemma.

Lemma 3.1. Let \(A \) be a 2-tubular \(k \)-algebra. Then the trivial extension \(T(A) \) is tame, and the category \(\text{mod}T(A) \) is equivalent to a category \(\text{mod}C \), where \(C \) is clannish.

Proof. Let \(A \) be a 2-tubular \(k \)-algebra. By lemma 2.1, we have that \(D^b(A) \cong D^b(D) \), where \(D \) is given by the quiver in figure 1.

Hence, the ordinary quiver of the trivial extension \(T(D) \) is given by:
with commutativity relations given by: $u \beta = x_1 x$, $v \alpha = x'_1 y$, $xx_{n-1} = \alpha x'_{n-1}$, $x_2 u = x'_{2} x'_1$, $\beta x_{n-1} = y x'_{n-1}$, $x'_2 v = x_2 x_1$ We considered now, the following clannish algebra C, given by the following quiver:
where \(q_i(\varepsilon_i) = (\varepsilon_i - K^i_1)(\varepsilon_i - K^i_2) = 0 \) with \(K^i_1 \neq K^i_2 \in k^* \), where \(i = 0, 1, 2 \) and as zero relation we have: \(p_1 p_n = p_3 p_2 = p_2 p_1 = 0 \).

Now, each module \(M \in \text{mod}\mathcal{C} \), has the form: \(M(n_0) = M_{K^0_1} \oplus M_{K^0_2} \) where each \(M_{K^0} \) is a \(k \)-vector space associated to the eigenvalue \(K^0_i \) see 2.6 in [C-B].

Then we can defined a functor \(F: \text{mod}\mathcal{T}(D) \rightarrow \text{mod}\mathcal{C} \) in the following form: Let \(X \in \text{mod}\mathcal{T}(D) \)

\[
F(X)(i_0) = \begin{cases} X_n \oplus X'_n & \text{if } i = n \\ X_2 \oplus X'_2 & \text{if } i = 2 \\ X_1 \oplus X'_1 & \text{if } i = 1 \\ X_i & \text{if } i \neq \{1, 2, n\} \end{cases}
\]

\[
F(X)(p_i) = \begin{cases} (X(x) & X(\beta) \\ -X(\alpha) & -X(y) \\ X(x_1) & X(v) \\ -X(u) & -X(x'_1) \\ X(x_2) & \\ -X(x'_2) & \text{if } i = 3 \\ X(x_{n-1}) & X(x'_{n-1}) & \text{if } i = n \\ X(x_i) & \text{if } i \neq \{1, 2, 3, n\} \end{cases}
\]

\[
F(X)(\varepsilon_i) = \begin{cases} (K^1_1 x_1 & 0 \\ 0 & K^1_2 x'_1) & \text{if } i = 1 \\ (K^2_1 x_2 & 0 \\ 0 & K^2_2 x'_2) & \text{if } i = 2 \\ (K^0_1 x_n & 0 \\ 0 & K^0_2 x'_n) & \text{if } i = n \end{cases}
\]

We define now the functor \(G: \text{mod}\mathcal{C} \rightarrow \text{mod}\mathcal{T}(D) \). Let \(M \in \text{mod}\mathcal{C} \), have that:

\[
p_i = \begin{pmatrix} M^n_{i1} & M^n_{i2} \\ M^n_{21} & M^n_{22} \end{pmatrix}
\]

where the \(M^n_{ij} : M_{K^0_i} = M_t \rightarrow M_{K^0_j} = M_j \) \(i, t, j = 1, 2 \), hence

\[
p_n = \begin{pmatrix} M^n_{1n-1} & M^n_{2n-1} \\ M^n_{1n-1} & M^n_{2n-1} \end{pmatrix}, p_{n-1} = \begin{pmatrix} M^n_{n-1n-2} \\ M^n_{n-1n-2} \end{pmatrix} \text{ and } p_3 = \begin{pmatrix} M^3_{31} \\ M^3_{32} \end{pmatrix}
\]
We defined the functor G in the following form: Let $M \in \text{mod} \mathcal{C}$

$$G(M)(x) = \begin{cases} M_2 & \text{if } x = x_i, \ i = 1, 2, n \\ M_1 & \text{if } x = x'_i, \ i = 1, 2, n \\ M_j & \text{if } x = x_j, \ j \neq \{1, 2, n\} \end{cases}$$

$$G(M)(x) = M_2^{22}(p_1) \quad G(M)(x_1) = M_2^{22}(p_2)$$
$$G(M)(\alpha) = M_1^{11}(p_1) \quad G(M)(u) = M_1^{21}(p_2)$$
$$G(M)(\beta) = -M_2^{11}(p_1) \quad G(M)(v) = -M_2^{21}(p_2)$$
$$G(M)(y) = -M_1^{11}(p_1) \quad G(M)(x'_1) = -M_1^{21}(p_2)$$
$$G(M)(x_2) = M_3^{32}(p_3) \quad G(M)(x_{n-1}) = -M_3^{23}(p_n)$$
$$G(M)(x'_2) = M_3^{31}(p_3) \quad G(M)(x'_{n-1}) = -M_3^{13}(p_3)$$
$$G(M)(x_j) = M_{j+1}(p_j) \quad \text{if } j \neq \{1, 2, 3, n\}$$

Hence, from the relations of Clannish algebra \mathcal{C}, it is easy verify that this definition of the functor G, defined a module in $\text{mod}T(D)$. By the construction these functors F and G we have that $F \circ G = 1_{\text{mod}T(D)}$ and $G \circ F = 1_{\text{mod} \mathcal{C}}$. But, is known that an algebra Clannish is tame (see [C-B]), then we have that the trivial extension $T(D)$ is tame. Since, a derived equivalence induces a stable equivalence between the trivial extensions (see [HW]), then $\text{mod}T(A) \cong \text{mod}T(D)$ then by Krause (see [Kr]) we have that the trivial extension $T(A)$ is tame.

Proposition 3.1 (prop. 2 in [DS]). Let R be a locally bounded k-category, and G be the group of the k-linear automorphism of R acting freely on the objects of R. If R/G is tame, then R also is tame.

Theorem 3.1. Let A be a tame concealed algebra, M be an indecomposable module in $\text{mod}A$, and assume $B = A[M]$ is of tame representation. Then the trivial extension $T(B)$ is tame if and only if the module M is regular.

Proof. Assume $T(B)$ is tame. How, $T(B) \cong \hat{B}/(\nu)$, then by Proposition 3.1, we have that $\hat{B} = A[M]$ is tame. Moreover, by lemma 3 in Ringel [R2] if $A[M]$ is tame, then the module M is regular or preinjective.
If the module M is preinjective, it is known that $\widehat{A[M]} \cong \widehat{M}A$, and $[M]A$ is wild by lemma 3 in [R2], hence a full wild subcategory of $[M]A$. Thus, \widehat{B} is wild, which is a contradiction. Therefore, the module M is regular.

Assume M is an indecomposable regular module. We consider two situations:

a) The algebra A is not concealed of type \widetilde{A}_n. Hence, we have that the algebra B is tubular or 2-tubular (see 2.2 in [P]).

If B is tubular, then by theorem 2.1 we have that \widehat{B} is tame and exhaustive, therefore the trivial extension $T(B)$ is tame. If B is 2-tubular, then by lemma 3.1 we have that the trivial extension $T(B)$ is tame.

b) $A = \widetilde{A}_n$. We use the table given by Ringel (see th. 3 in [R2]), we have two situations:

b1) The module M is homogeneous. In this situation we have:

1) $(\widetilde{A}_{22}, 1)$; 2) $(\widetilde{A}_{23}, 1)$; 3) $(\widetilde{A}_{24}, 1)$; 4) $(\widetilde{A}_{25}, 1)$; 5) $(\widetilde{A}_{26}, 1)$; 6) $(\widetilde{A}_{2q}, 1)$ if $q \geq 7$

7) $(\widetilde{A}_{33}, 1)$; 8) $(\widetilde{A}_{34}, 1)$; 9) $(\widetilde{A}_{35}, 1)$; 10) $(\widetilde{A}_{36}, 1)$;

11) $(\widetilde{A}_{44}, 1)$

In the situation 1) to 6), these algebras are domestic tubular of type $(2,2,q)$ and that corresponds to the tubular type of D_{q+2}. In the situation 7 at 9), this algebras are domestic tubular of type $(2,3,3)$, $(2,3,4)$ and $(2,3,5)$ which corresponds to E_6, E_7 and E_8 respectively. Now, the situation 10) and 11) is also tubular of type $(2,3,6)$ and $(2,4,4)$ corresponding to euclidean type \widetilde{E}_8 and \widetilde{E}_7 respectively. By theorem 2.1 we have that the trivial extension $T(B)$ is tame.

b2) The module M is not homogeneous. Hence, we have two cases:

b2.1) (\widetilde{A}_{pq}, p), where the module M lies in the mouth of tube of rank p. Hence, (\widetilde{A}_{p+1q}) which is tubular, therefore the trivial extension $T(B)$ is tame.

b2.2) $(\widetilde{A}_{pq}, 2p)$, where the module M lies in a tube of rank p, and regular of length 2. It is easy to see that the proof of theorem 3 in Ringel [R2] if $A_{pq}[N]$ with module N has regular length 2 there exist a sequence of reflexions which takes B into $\widetilde{A}_{pq}[N]$, then $D^b(B)$ group $\cong D^b(\widetilde{A}_{pq}[N])$.
We consider the C algebra, given by the quiver in the following figure:

![Figure 4.](image)

where the dotted lines is zero relation. We have that $C := \tilde{A}_{p-1}q[M]$ where the module M is defined by:

$$
M := \begin{bmatrix}
1 & 0 & \ldots & 0 \\
0 & \ldots & 0
\end{bmatrix}
$$

that is lies in the mouth the tube of rank $p - 1$, the algebra C is a tilted algebra of type \tilde{A}_{pq} then there exist a functor $\rho : \mathcal{D}^b(C) \rightarrow \mathcal{D}^b(\tilde{A}_{pq})$, that give a triangular equivalence such that $\rho(M)$ lies in the tube of rank p, and is a regular of length 2.

We consider now the algebra D defined by the following quiver:

![Figure 5.](image)
Here the module \(M \) is the same as before. Then, by Barot-Lenzing (see [BL]), we have that:

\[
D^b(D) \sim D^b((A_{pq})[\rho(M)]),
\]

is a one-point extension by module \(\rho(M) \) of regular length 2, then

\[
D^b(B) \sim D^b((A_{pq})[\rho(M)]).
\]

Using the similar construction as the lemma 3.1 with clannish algebras is not difficult to see that \(\text{mod} D \) is equivalent to a clannish algebra \(E \) given by the following quiver:

![Figure 6.](image)

Where \(\epsilon \) is special loop. By Geiss and De la Peña (see 4.4 in [GEP]) the trivial extension \(T(E) \) is tame, thus \(T(D) \) is tame. Since

\[
D^b(D) \cong D^b(B),
\]

therefore \(\text{mod} T(D) \cong \text{mod} T(B) \), then by [Kr] we have that \(T(B) \) is tame.

Before to state the next result, we consider \(A \cong kQ/I \) be an algebra, where \(Q \) is a quiver without oriented cycles. Let \(\chi_A : \mathbb{Z}^{Q_0} \rightarrow \mathbb{Z} \) and \(q_A : \mathbb{Z}^{Q_0} \rightarrow \mathbb{Z} \) be the quadratic forms defined by:

\[
\chi_A(v) = \sum_{s=0}^{\infty} \sum_{i,j \in Q_0} (-1)^s \text{Ext}_A^s(S_i, S_j)v_i v_j
\]

\[
q_A(v) = \sum_{i \in Q} v_i^2 - \sum_{(i \rightarrow j) \in Q_1} v_i v_j + \sum_{i,j \in Q_0} r(i, j)v_i v_j
\]

where \(v = (v_1, ..., v_n) \), \(r(i, j) = \text{dim} k e_j (I/(IJ + JI)) e_i \), and \(J \) is the ideal generated by arrows of the quiver \(Q \). The quadratic form \(\chi_A \) is called the Euler form of the algebra \(A \), and \(q_A \) is called the Tits form. Its know that if \(\text{gldim} A \leq 2 \), then \(\chi_A = q_A \).
As the consequence of our theorem 3.1, we have the following corollary.

Corollary 3.1. Let $A \cong kQ/I$, where Q is a tree, such that Euler form χ_A is non-negative and $\text{corank} \chi_A \leq 2$. Then the trivial extension $T(A)$ is tame.

Proof. By Barot-De la Peña (see [BP]) we have that the algebra A is domestic tubular, tubular or 2-tubular. Therefore, by the above theorem we have that the trivial extension $T(A)$ is tame.

References

Received: July 2001.

Cristián Novoa Bustos

Dept. Matemática e Física
Universidade Católica de Goiás
Av. Universitria 1440 / st. Universitario
CEP 74000-000 Goiânia-Go
Brasil
cristiannovoa@netscape.net

and

José Antonio de la Peña

Instituto de Matemática
Circuito Exterior
Ciudad Universitaria
México 04510, D. F.
México
jap@penelope.matem.unam.mx