INTRODUCTION

In the training of surgeons, researches and others professionals, the swine have been used as experimental model in different types of surgeries and transplants (Triviño et al., 1992; Richer et al., 1994; Filipponi et al., 1995; Minh, 1996; Bhutani, 1998; Taniguchi et al., 1998), interpretations of abdominal arteriography (Nayar et al., 1983), in laparoscopic cholecystectomy (Batista et al., 1993) and in morphologic and angiographic studies (Innocenti et al., 1997; Sun and Zhang, 1989; Sanches et al., 1994). Therefore it is extremely necessary to have the knowledge of its visceral anatomy.

The target of this work is to research the anatomical variations of the hepatic artery and of their branches that contribute to the irrigation of the liver of this animal.

MATERIAL AND METHOD

We have gathered thirty specimens, removed in block – stomach, liver and duodenum, from pigs of the Landrace and Large White Breeds, adult males and females, slaughtered at the slaughtering house Leguthi, located I the city of Presidente Prudente, in the State of São Paulo, Brazil.

A cannula was place in the celiac artery, and injected with a solution of neoprene latex. The blocks were fixed in 10% formaldehyde solution. Then, the hepatic artery was dissected to superficial parenchyma of the visceral face of the organ, as well as the cystic duct and the gall bladder. In the observation of the external segmentation of the liver, of their lobes and grooves, we adopted the Veterinary Anatomical Nomenclature (International Committee on Veterinary Gross Anatomical Nomenclature, 1999) for designation of the referred structures. To verify any association between ramification pattern and collateral ramification, the Cochran-Mantel-Haenszel statistical test was used.

RESULTS

The ramification of the hepatic artery is characterised by three basic patterns, which can be observed in Table I. In those three patterns, the hepatic artery collateral branch was present in 43.33% of the time and absent in 56.66% of the time. The hepatic artery has a single collateral branch in 26.67% and two collateral branches in 16.66% of the sample.
In the first type, by trifurcation of the hepatic artery (3 livers studied), before penetrating in the hepatic lobes and free from collateral branches (Fig.1), becomes the gastroduodenal artery and originates two more arteries, one with branches for the caudate, right lateral, right medial lobes an the gall bladder (cystic artery).

The other one, supply with branches for the quadrate, left medial, left lateral lobes and branches for the stomach including the right gastric artery.

In some others subtypes of this first type (5 livers), with quite accentuated variations from one liver to another, the hepatic artery supplies terminal branches for the caudate, right lateral, right medial, quadrate, left medial and left lateral lobes, as well as, for the gall bladder, the stomach, the cystic and gastric right arteries, respectively.

In the second type, by trifurcation (7 livers), one or more collateral branches of the trunk of the hepatic artery are variably observed supplying the caudate, right medial, right lateral, quadrate lobes and the gall bladder (cystic artery), as a result it follows the trifurcation of the hepatic artery or tripod, namely, the gastroduodenal artery, two more arteries that ramify with accentuated variation in the six hepatic lobes of the swine.

In the pattern of the bifurcation type of the hepatic artery (43.33%, Fig.2), which is free from collateral branches (first type), there is a characterised distribution by a right branch that is the gastroduodenal artery, and a left branch from where some trunks originate which irrigate in an extremely variable way the six lobes of the liver, the gall bladder (cystic artery) and the stomach, where it then branches off in the right gastric artery.

Occasionally (3 pieces studied), the gastroduodenal artery can also give rise to collateral artery that distributes to the lesser curvature of the stomach and in the caudate, right lateral and right medial lobes.

In the second type of the bifurcation of the hepatic artery, in which it emits collaterals which supply the caudate, right lateral, right medial lobes and the gall bladder (cystic artery), the hepatic artery branches off in the gastroduodenal artery and in the left branch.

The gastroduodenal artery can supply branches for the caudate, right lateral, right medial, quadrate lobes, gall bladder (cystic artery) and branches for the lesser stomach curvature. The left branch originates vessels that are variably distributed to all of the lobes of the liver and, in a single case, (3.33%) it does not supply the right gastric artery.

In the two specimens which presented a pattern of the quadruple ramification type of the hepatic artery, in one case only it emits a collateral branch initially for the caudate lobe following by its quadruple division in gastroduodenal artery and three arteries. The gastroduodenal artery can originate branches for the caudate, right lateral lobe and a gastric branch for the lesser curvature of the stomach (3.33%).

The most proximal of the three branches mentioned above, supplies the cystic artery and terminal branches for the right lateral and medial lobes; the intermediate one emits other cystic artery and branches for the quadrate, left medial and lateral lobes. The distal artery is the left branch itself supplies the left lateral anastomosing in the right gastric artery.

In the other case of this pattern (3.33%), the hepatic artery, free from collateral branches, becomes the gastroduodenal artery, and originates the gastric branch, an intermediate branch and a left branch. The gastroduodenal artery ramifies in the caudate, right lateral lobes and it emits a branch for the lesser curvature of the stomach. The gastric branch goes to the lesser curvature of the stomach. The intermediate branch emits the cystic artery and branches for the right medial and quadrate lobes. The left branch, before finishing in right gastric artery, emits branches for the quadrate, left medial and left lateral lobes of the liver.

The frequency distribution for the type of branching of the hepatic artery (bifurcation, trifurcation and quadruple ramification) and the presence of absence of collateral ramification is specified in Table I. The Cochran-Mantel-Haenszel statistical test to verify if association exists among these patterns presented the p_value calculated of 0.895. Therefore, there does not exist any relationship between the ramification type and the occurrence of collateral ramification.

<table>
<thead>
<tr>
<th>Ramification of hepatic artery</th>
<th>Ramification collateral branches</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifurcation</td>
<td>Absent (n (%))</td>
<td>Presents (n (%))</td>
</tr>
<tr>
<td>8 (61.54)</td>
<td>5 (38.46)</td>
<td>13 (43.33)</td>
</tr>
<tr>
<td>Trifurcation</td>
<td>8 (53.33)</td>
<td>7 (46.67)</td>
</tr>
<tr>
<td>Quadruple</td>
<td>1 (50.00)</td>
<td>1 (50.00)</td>
</tr>
<tr>
<td>Total</td>
<td>17 (56.67)</td>
<td>13 (43.33)</td>
</tr>
</tbody>
</table>

Table I. Distribution of the pieces for ramification type and collateral ramification of the hepatic artery in the swine.
DISCUSSION

The swine, being the chosen animals for the training of the laparoscopy (Triviño et al.; Batista et al.; Richer et al.; Filipponi et al.; Bhutani et al.; Taniguchi et al.), as well as biological models in liver transplants (Minh), we aimed at accomplishing a systematic research of the hepatic artery and of their branches in this animal.

This dissection has shown that hepatic artery provides branches for all of the segments of the liver in the swine. The data indicate, however, that variations exist in the process of the hepatic artery as Innocenti et al. mentioned. Although we agree, as well with the observations of Richer et al., when they affirm that the hepatic branches terminate in the six lobes of the swine’s liver; in our material, it was not founded that the branches for the left lobe originate the left gastric artery, but, they originate the right gastric artery that lies close to the cardia and to the lesser stomach curvature. In the same way, the independent left hepatic artery, that would be born of the left gastric artery irrigating the whole left lobe, was not verified in any of our livers, such as it was described by Filipponi et al.

In the liver of the swine, it presents one or two collateral branches for hepatic lobes, as can be observed in the specimens presents here, with a frequency of 43.33%. These collateral vessels are not described in the literature in mammals (Innocenti et al.; Nayar et al.; Sun & Zhang; Sanches et al.; Richer et al., Filipponi et al.).
RESUMEN: Estudiamos las variaciones anatómicas de la ramificación de la arteria hepática en 30 cerdos (Sus scrofa domestica) adultos, machos y hembras. Obtuvimos muestras en boque (estómago, hígado y duodeno). La arteria hepática fue inyectada con neoprene látex y, posteriormente, disecada. La ramificación de la arteria hepática presentó tres patrones básicos: trifurcación, bifurcación, y ramificación cuádruple, dando origen a ramas nutricias para los lóbulos del hígado y para las estructuras vecinas. En estos tres patrones, la arteria hepática puede poseer o no ramas colaterales.


REFERENCES


Nayar, K. N. M.; Singh, G.; Singh,Y.; Singh A. P. & Singh, G. R. Comparative arteriographic anatomy of the abdo- 


Triviño, T.; Lopes Filho, G. J.; Ferraro, J. R.; Goldenberg, A.; Lobo E. J.& Miranda, J. L.R. Instalação e desenvolvimento de um programa de transplante experi-


Correspondence to: 
Prof. Dra. Jussara de Almeida Bruno Büchler 
Department of Anatomy 
Universidade do Oeste Paulista (UNOESTE) 
Rua José Bengtovani, 700 
Jd. Cidade Universitária 
CEP: 19050-680 
Presidente Prudente 
SP - BRAZIL 
e-mail: jussarabr@ig.com.br 
raulafneto@uol.com.br

Received : 24-03-2004 
Accepted: 09-08-2004