POSTER PRESENTATION - SHORT COMMUNICATION

Effect of iron on the activation of the MAPK/ERK pathway in PC12 neuroblastoma cells

PABLO MUÑOZ1, GABRIELA ZAVALA3, KAREN CASTILLO3, PABLA AGUIRRE3, CECILIA HIDALGO2 and MARCO T. NÚÑEZ3

1PhD Program in Cell, Molecular and Neural Biology, Faculty of Sciences, Universidad de Chile; 2Fondap Center for Molecular Studies of the Cell and 3 Biology Department and Cell Dynamics and Biotechnology Research Center, Faculty of Sciences, Universidad de Chile

ABSTRACT

Recent evidence suggests that reactive oxygen species function as second messenger molecules in normal physiological processes. For example, activation of N-Methyl-D-Aspartate receptor results in the production of ROS, which appears to be critical for synaptic plasticity, one of the cellular mechanisms that underlie learning and memory. In this work, we studied the effect of iron in the activation of MAPK/ERK pathway and on Ca2+ signaling in neuronal PC12 cells. We found that iron-dependent generation of hydroxyl radicals is likely to modulate Ca2+ signaling through RyR calcium channel activation, which, in turn, activates the MAPK/ERK pathway. These findings underline the relevance of iron in normal neuronal function.

Key terms: NMDA receptor, calcium, iron, oxidative stress, MAPK/ERK, hippocampal slices, long-term potentiation

INTRODUCTION

In hippocampal synapses, a rise in intracellular postsynaptic calcium concentration is necessary in order to induce activation of MAPK/ERK pathway and changes in synaptic plasticity. This increase is initially produced by Ca2+ influx through NMDAR. Nevertheless, Ca2+ released from ryanodine-sensitive intracellular stores through Ca2+-induced Ca2+ release amplifies the initial Ca2+ entry signal triggering the activation of a number of signaling cascades, such as the MAPK/ERK pathway (Krapivinsky et al., 2003). Recent evidence suggests that reactive oxygen species (ROS) function as second messenger molecules in normal physiological processes. For example, activation of N-Methyl-D-Aspartate receptor (NMDAR) results in the production of ROS, which appears to be critical for synaptic plasticity, one of the cellular mechanisms that underlie learning and memory (Bailey et al., 2004; Kahlert et al., 2005). In this work, we studied the effect of iron in the activation of MAPK/ERK pathway and on Ca2+ signaling in neuronal PC12 cells.

RESULTS AND DISCUSSION

Given that RyR calcium channels are activated by oxidation (Hidalgo et al., 2000; Donoso et al., 2000; Carrasco et al., 2004), and iron is a notorious ROS producer in neuronal cells (Núñez et al., 2004), we hypothesized that iron-induced ROS could modulate Ca2+ release from Ry-sensitive intracellular stores. To address this possibility, we used confocal imaging in the line-scan mode to detect local Ca2+ signals. When PC12 cells were treated with iron,
spark-like Ca\(^{2+}\) transients were triggered. This effect was blocked by Ry, a direct indication that the iron-induced Ca\(^{2+}\) sparks were mediated by the RYR calcium channel (Fig. 1).

Immunoblot assays with an antibody that recognizes both the phosphorylated and the unphosphorylated forms of ERK1/2 showed that the observed increases were not due to increased levels of ERK1/2 protein. Treatment of PC12 cells with the iron chelator deferrioxamine or the hydroxyl radical scavenger mannitol attenuated NMDA-induced phosphorylation of ERKs (Muñoz et al., manuscript in preparation). Thus, iron is an effective activator of pre-existing ERK1/2.

In summary, these results suggest that iron-dependent generation of hydroxyl radicals is likely to modulate Ca\(^{2+}\) signaling through RyR calcium channel activation, which, in turn, activates the MAPK/ERK pathway. These findings underline the relevance of iron in normal neuronal function.

ACKNOWLEDGEMENTS

This work was supported by grants FONDAP CEMC 15010006, MECESUP UCH001, and ICM P99-031F.

REFERENCES


